MaQuIs—Concept for a Mars Quantum Gravity Mission

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
L. Wörner , B.C. Root , P. Bouyer , C. Braxmaier , D. Dirkx , J. Encarnação , E. Hauber , H. Hussmann , Ö. Karatekin , A. Koch , L. Kumanchik , F. Migliaccio , M. Reguzzoni , B. Ritter , M. Schilling , C. Schubert , C. Thieulot , W.v. Klitzing , O. Witasse
{"title":"MaQuIs—Concept for a Mars Quantum Gravity Mission","authors":"L. Wörner ,&nbsp;B.C. Root ,&nbsp;P. Bouyer ,&nbsp;C. Braxmaier ,&nbsp;D. Dirkx ,&nbsp;J. Encarnação ,&nbsp;E. Hauber ,&nbsp;H. Hussmann ,&nbsp;Ö. Karatekin ,&nbsp;A. Koch ,&nbsp;L. Kumanchik ,&nbsp;F. Migliaccio ,&nbsp;M. Reguzzoni ,&nbsp;B. Ritter ,&nbsp;M. Schilling ,&nbsp;C. Schubert ,&nbsp;C. Thieulot ,&nbsp;W.v. Klitzing ,&nbsp;O. Witasse","doi":"10.1016/j.pss.2023.105800","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to present the concept of a dedicated gravity field mission for the planet Mars, the Mars Quantum Gravity Mission (MaQuIs).</p><p>The mission is targeted at improving the data on the gravitational field of Mars, enabling studies on planetary dynamics, seasonal changes, and subsurface water reservoirs.</p><p>MaQuIs follows well known mission scenarios, currently deployed for Earth, and includes state-of-the-art quantum technologies to enhance the gained scientific signal.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"239 ","pages":"Article 105800"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063323001691","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to present the concept of a dedicated gravity field mission for the planet Mars, the Mars Quantum Gravity Mission (MaQuIs).

The mission is targeted at improving the data on the gravitational field of Mars, enabling studies on planetary dynamics, seasonal changes, and subsurface water reservoirs.

MaQuIs follows well known mission scenarios, currently deployed for Earth, and includes state-of-the-art quantum technologies to enhance the gained scientific signal.

火星量子重力任务的概念
本文的目的是提出一个专门的火星重力场任务的概念,即火星量子重力任务(MaQuIs)。该任务的目标是改善火星引力场的数据,使对行星动力学、季节变化和地下水库的研究成为可能。MaQuIs遵循众所周知的任务场景,目前部署在地球上,并包括最先进的量子技术,以增强获得的科学信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Planetary and Space Science
Planetary and Space Science 地学天文-天文与天体物理
CiteScore
5.40
自引率
4.20%
发文量
126
审稿时长
15 weeks
期刊介绍: Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered: • Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics • Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system • Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating • Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements • Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation • Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites • Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind • Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations • Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets • History of planetary and space research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信