Improved semi-empirical formulae for Beta-decay

Q2 Physics and Astronomy
Reddi Rani L. , H.S. Anushree , H.C. Manjunatha , N. Sowmya , L. Seenappa , K.N. Sridhar , P.S. Damodhara Gupta
{"title":"Improved semi-empirical formulae for Beta-decay","authors":"Reddi Rani L. ,&nbsp;H.S. Anushree ,&nbsp;H.C. Manjunatha ,&nbsp;N. Sowmya ,&nbsp;L. Seenappa ,&nbsp;K.N. Sridhar ,&nbsp;P.S. Damodhara Gupta","doi":"10.1016/j.physo.2023.100187","DOIUrl":null,"url":null,"abstract":"<div><p>We attempted to improve semi-empirical equations for <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>-decay in the atomic number range <span><math><mrow><mn>1</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>42</mn></mrow></math></span> and mass number range <span><math><mrow><mn>3</mn><mo>≤</mo><mi>A</mi><mo>≤</mo><mn>118</mn></mrow></math></span>. We suggested a semi-empirical formula in terms of an atomic number of daughter nuclei and decay energy in keV. We divided the nuclei into four categories: even(Z)-even(N), even(Z)-odd(N), odd(Z)-even(N), and odd(Z)-odd(N) to propose improved semi-empirical formulae. The existing equation values are compared to the experimental results. When compared to other semi-empirical equations accessible in the literature, the standard deviation produced from the current formula is lower. The improved semi-empirical formulas are of the first kind, requiring only an atomic number of daughter and decay energy during <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>-decay. This study discovers a significance in predicting <span><math><msup><mrow><mi>β</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>-decay.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"17 ","pages":"Article 100187"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666032623000522/pdfft?md5=9a8702c0da47a6675d129fd9832b8b4f&pid=1-s2.0-S2666032623000522-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032623000522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We attempted to improve semi-empirical equations for β-decay in the atomic number range 1Z42 and mass number range 3A118. We suggested a semi-empirical formula in terms of an atomic number of daughter nuclei and decay energy in keV. We divided the nuclei into four categories: even(Z)-even(N), even(Z)-odd(N), odd(Z)-even(N), and odd(Z)-odd(N) to propose improved semi-empirical formulae. The existing equation values are compared to the experimental results. When compared to other semi-empirical equations accessible in the literature, the standard deviation produced from the current formula is lower. The improved semi-empirical formulas are of the first kind, requiring only an atomic number of daughter and decay energy during β-decay. This study discovers a significance in predicting β-decay.

改进的β衰变半经验公式
我们试图改进原子序数1≤Z≤42和质量数3≤A≤118范围内β−衰变的半经验方程。我们提出了一个关于子核原子序数和keV衰变能量的半经验公式。我们将原子核分为四类:偶(Z)-偶(N)、偶(Z)-奇(N)、奇(Z)-偶(N)和奇(Z)-奇(N),并提出改进的半经验公式。将已有的方程值与实验结果进行了比较。与文献中可获得的其他半经验方程相比,当前公式产生的标准差较低。改进的半经验公式属于第一类,只需要子原子序数和β−衰变过程中的衰变能量。该研究对预测β−衰变具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信