High-order lifting for polynomial Sylvester matrices

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Clément Pernet , Hippolyte Signargout , Gilles Villard
{"title":"High-order lifting for polynomial Sylvester matrices","authors":"Clément Pernet ,&nbsp;Hippolyte Signargout ,&nbsp;Gilles Villard","doi":"10.1016/j.jco.2023.101803","DOIUrl":null,"url":null,"abstract":"<div><p>A new algorithm is presented for computing the resultant of two generic bivariate polynomials over an arbitrary field. For <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span> in <span><math><mi>K</mi><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo></math></span> of degree <em>d</em> in <em>x</em> and <em>n</em> in <em>y</em>, the resultant with respect to <em>y</em> is computed using <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1.458</mn></mrow></msup><mi>d</mi><mo>)</mo></math></span> arithmetic operations if <span><math><mi>d</mi><mo>=</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span>. For <span><math><mi>d</mi><mo>=</mo><mn>1</mn></math></span>, the complexity estimate is therefore reconciled with the estimates of Neiger et al. 2021 for the related problems of modular composition and characteristic polynomial in a univariate quotient algebra. The 3/2 barrier in the exponent of <em>n</em> is crossed for the first time for the resultant. The problem is related to that of computing determinants of structured polynomial matrices. We identify new advanced aspects of structure for a polynomial Sylvester matrix. This enables to compute the determinant by mixing the baby steps/giant steps approach of Kaltofen and Villard 2005, until then restricted to the case <span><math><mi>d</mi><mo>=</mo><mn>1</mn></math></span> for characteristic polynomials, and the high-order lifting strategy of Storjohann 2003 usually reserved for dense polynomial matrices.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X23000729/pdfft?md5=72b813e3258f79c8cf5a380cd73b1e8f&pid=1-s2.0-S0885064X23000729-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000729","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

A new algorithm is presented for computing the resultant of two generic bivariate polynomials over an arbitrary field. For p,q in K[x,y] of degree d in x and n in y, the resultant with respect to y is computed using O(n1.458d) arithmetic operations if d=O(n1/3). For d=1, the complexity estimate is therefore reconciled with the estimates of Neiger et al. 2021 for the related problems of modular composition and characteristic polynomial in a univariate quotient algebra. The 3/2 barrier in the exponent of n is crossed for the first time for the resultant. The problem is related to that of computing determinants of structured polynomial matrices. We identify new advanced aspects of structure for a polynomial Sylvester matrix. This enables to compute the determinant by mixing the baby steps/giant steps approach of Kaltofen and Villard 2005, until then restricted to the case d=1 for characteristic polynomials, and the high-order lifting strategy of Storjohann 2003 usually reserved for dense polynomial matrices.

多项式Sylvester矩阵的高阶提升
提出了一种计算任意域上两个一般二元多项式的结式的新算法。对于K[x,y]中的p,q在x中阶为d, n在y中阶为n,如果d=O(n1/3),则对y的结果使用O(n1.458d)算术运算计算。因此,对于d=1,复杂性估计与Neiger et al. 2021对单变量商代数中模组成和特征多项式相关问题的估计相一致。对于结果,n指数中的3/2势垒第一次被越过。这个问题与计算结构多项式矩阵的行列式有关。我们确定了多项式Sylvester矩阵结构的新高级方面。这使得通过混合Kaltofen和Villard 2005的小步法/大步法来计算行列式成为可能,直到那时仅限于d=1的特征多项式的情况,而Storjohann 2003的高阶提升策略通常用于密集多项式矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信