{"title":"Geometric triangulations and discrete Laplacians on manifolds: An update","authors":"David Glickenstein","doi":"10.1016/j.comgeo.2023.102063","DOIUrl":null,"url":null,"abstract":"<div><p>This paper uses the technology of weighted triangulations to study discrete versions of the Laplacian on piecewise Euclidean manifolds. Given a collection of Euclidean simplices glued together along their boundary, a geometric structure on the Poincaré dual may be constructed by considering weights at the vertices. We show that this is equivalent to specifying sphere radii at vertices and generalized intersection angles at edges, or by specifying a certain way of dividing the edges. This geometric structure gives rise to a discrete Laplacian operator acting on functions on the vertices. We study these geometric structures in some detail, considering when dual volumes are nondegenerate, which corresponds to weighted Delaunay triangulations in dimension 2, and how one might find such nondegenerate weighted triangulations. Finally, we talk briefly about the possibilities of discrete Riemannian manifolds.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000834","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper uses the technology of weighted triangulations to study discrete versions of the Laplacian on piecewise Euclidean manifolds. Given a collection of Euclidean simplices glued together along their boundary, a geometric structure on the Poincaré dual may be constructed by considering weights at the vertices. We show that this is equivalent to specifying sphere radii at vertices and generalized intersection angles at edges, or by specifying a certain way of dividing the edges. This geometric structure gives rise to a discrete Laplacian operator acting on functions on the vertices. We study these geometric structures in some detail, considering when dual volumes are nondegenerate, which corresponds to weighted Delaunay triangulations in dimension 2, and how one might find such nondegenerate weighted triangulations. Finally, we talk briefly about the possibilities of discrete Riemannian manifolds.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.