Mohammad Yassin Zamanian, Lydia Giménez-Llort, Marjan Nikbakhtzadeh, Zahra Kamiab, Mahsa Heidari, Gholamreza Bazmandegan
{"title":"The Therapeutic Activities of Metformin: Focus on the Nrf2 Signaling Pathway and Oxidative Stress Amelioration.","authors":"Mohammad Yassin Zamanian, Lydia Giménez-Llort, Marjan Nikbakhtzadeh, Zahra Kamiab, Mahsa Heidari, Gholamreza Bazmandegan","doi":"10.2174/1874467215666220620143655","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, the health-protective and therapeutic properties of MET have been discussed, focusing on the effect of MET on the Nrf2 expression in patients with different pathological conditions. Metformin (MET) regulates high blood glucose, thus being an integral part of the antidiabetic medications used to treat type 2 diabetes mellitus. It belongs to biguanide class medications that are administered through the oral route. Moreover, the agent is widely known for its anti-cancer, anti-oxidant, anti-inflammatory, and neuroprotective effects. The MET modulates the nuclear factor erythroid-2 related factor-2 (Nrf2) signaling pathway, which in turn yields the above-mentioned medical benefits to patients. The Nrf2 signaling pathways are modulated in multiple ways described subsequently: 1) MET acts on the cancer cells and inactivates Raf-ERK signaling, thus reducing Nrf2 expression, 2) MET obstructs the expression of proteins that are involved in apoptosis of tumor cells and also prevents tumor cells from oxidation through an AMPK-independent pathway; 3) MET carries out Keap1-independent mechanism for reducing the levels of Nrf2 protein in cancer cells; 4) MET upregulates the Nrf2-mediated transcription to stimulate the anti-oxidant process that prevents oxidative stress in cells system and consequently gives neuroprotection from rotenone and 5) MET downregulates p65 and upregulates Nrf2 which helps improve the angiogenesis impairment stimulated by gestational diabetes mellitus. This article presents an analysis of the health-protective properties of MET and also sheds light on the effect of MET on the Nrf2 expression in patients with different pathological conditions.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 3","pages":"331-345"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1874467215666220620143655","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In the present study, the health-protective and therapeutic properties of MET have been discussed, focusing on the effect of MET on the Nrf2 expression in patients with different pathological conditions. Metformin (MET) regulates high blood glucose, thus being an integral part of the antidiabetic medications used to treat type 2 diabetes mellitus. It belongs to biguanide class medications that are administered through the oral route. Moreover, the agent is widely known for its anti-cancer, anti-oxidant, anti-inflammatory, and neuroprotective effects. The MET modulates the nuclear factor erythroid-2 related factor-2 (Nrf2) signaling pathway, which in turn yields the above-mentioned medical benefits to patients. The Nrf2 signaling pathways are modulated in multiple ways described subsequently: 1) MET acts on the cancer cells and inactivates Raf-ERK signaling, thus reducing Nrf2 expression, 2) MET obstructs the expression of proteins that are involved in apoptosis of tumor cells and also prevents tumor cells from oxidation through an AMPK-independent pathway; 3) MET carries out Keap1-independent mechanism for reducing the levels of Nrf2 protein in cancer cells; 4) MET upregulates the Nrf2-mediated transcription to stimulate the anti-oxidant process that prevents oxidative stress in cells system and consequently gives neuroprotection from rotenone and 5) MET downregulates p65 and upregulates Nrf2 which helps improve the angiogenesis impairment stimulated by gestational diabetes mellitus. This article presents an analysis of the health-protective properties of MET and also sheds light on the effect of MET on the Nrf2 expression in patients with different pathological conditions.
期刊介绍:
Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology.
Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.