Neil S. Arnold, Jacek P. Dworzanski, Sue Anne Sheya, William H. McClennen, Henk L. C. Meuzelaar
{"title":"Design considerations in field-portable GC-based hyphenated instrumentation","authors":"Neil S. Arnold, Jacek P. Dworzanski, Sue Anne Sheya, William H. McClennen, Henk L. C. Meuzelaar","doi":"10.1002/1520-6521(2000)4:5<219::AID-FACT2>3.0.CO;2-7","DOIUrl":null,"url":null,"abstract":"<p>The use of hyphenated GC-based methods in the development of portable chemical-monitoring instruments can offer considerable advantages to the instrument maker. Foremost among these advantages are specificity, speed, and lower costs. In this article, the authors describe the basis for achieving these advantages using examples of three prototype and breadboard instruments developed in their laboratories and give an extended theoretical discussion of the basis for what has been called “transfer-line GC” or TLGC. This TLGC approach to fixed pressure drop chromatography can be used to illustrate overall theoretical limitations of various approaches to high-speed GC for real-time monitoring applications. The three example instruments are a “roving” automated vapor sampling (AVS) TLGC/MS instrument, a breadboard AVS-TLGC/IMS (ion mobility spectrometry) instrument, and a breadboard AVS-TLGC/GC instrument. Discussion will include the application of TLGC theory to instrument design and will use example analyses that focus on the eventual application of this technology to the near real-time detection of highly toxic chemical vapors. © 2000 John Wiley & Sons, Inc. Field Analyt Chem Technol 4: 219–238, 2000</p>","PeriodicalId":100527,"journal":{"name":"Field Analytical Chemistry & Technology","volume":"4 5","pages":"219-238"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1520-6521(2000)4:5<219::AID-FACT2>3.0.CO;2-7","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Analytical Chemistry & Technology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1520-6521%282000%294%3A5%3C219%3A%3AAID-FACT2%3E3.0.CO%3B2-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The use of hyphenated GC-based methods in the development of portable chemical-monitoring instruments can offer considerable advantages to the instrument maker. Foremost among these advantages are specificity, speed, and lower costs. In this article, the authors describe the basis for achieving these advantages using examples of three prototype and breadboard instruments developed in their laboratories and give an extended theoretical discussion of the basis for what has been called “transfer-line GC” or TLGC. This TLGC approach to fixed pressure drop chromatography can be used to illustrate overall theoretical limitations of various approaches to high-speed GC for real-time monitoring applications. The three example instruments are a “roving” automated vapor sampling (AVS) TLGC/MS instrument, a breadboard AVS-TLGC/IMS (ion mobility spectrometry) instrument, and a breadboard AVS-TLGC/GC instrument. Discussion will include the application of TLGC theory to instrument design and will use example analyses that focus on the eventual application of this technology to the near real-time detection of highly toxic chemical vapors. © 2000 John Wiley & Sons, Inc. Field Analyt Chem Technol 4: 219–238, 2000
基于gc的现场便携式连字符仪器的设计考虑
在便携式化学监测仪器的开发中使用连字符气相色谱方法可以为仪器制造商提供相当大的优势。这些优势中最重要的是专一性、速度和较低的成本。在这篇文章中,作者用他们实验室开发的三种原型和面包板仪器的例子描述了实现这些优势的基础,并对所谓的“传输线GC”或TLGC的基础进行了扩展的理论讨论。这种固定压降色谱的TLGC方法可以用来说明用于实时监测应用的各种高速GC方法的总体理论局限性。这三台示例仪器分别是“漫游”自动蒸汽取样(AVS) TLGC/MS仪器、面包板AVS-TLGC/IMS(离子迁移率谱)仪器和面包板AVS-TLGC/GC仪器。讨论将包括TLGC理论在仪器设计中的应用,并将使用实例分析,重点讨论该技术在近实时检测剧毒化学蒸汽中的最终应用。©2000 John Wiley &儿子,Inc。化学工程学报(自然科学版),2009,31 (4):391 - 398
本文章由计算机程序翻译,如有差异,请以英文原文为准。