Influence of ABCB1, CYP3A5 and CYP3A4 gene polymorphisms on prothrombin time and the residual equilibrium concentration of rivaroxaban in patients with non-valvular atrial fibrillation in real clinical practice.
IF 1.7 3区 医学Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Dmitry Alekseevitch Sychev, Aleksey Vladimirovich Sokolov, Olga Vilorovna Reshetko, Vladimir Petrovich Fisenko, Igor Nikolaevich Sychev, Elena Anatolievna Grishina, Pavel Olegovich Bochkov, Roman Vladimirovich Shevchenko, Sherzod Pardaboevich Abdullaev, Natalia Pavlovna Denisenko, Dmitry Vladimirovich Ivashchenko, Zhannet Alimovna Sozaeva, Anastasia Alekseevna Kachanova
{"title":"Influence of ABCB1, CYP3A5 and CYP3A4 gene polymorphisms on prothrombin time and the residual equilibrium concentration of rivaroxaban in patients with non-valvular atrial fibrillation in real clinical practice.","authors":"Dmitry Alekseevitch Sychev, Aleksey Vladimirovich Sokolov, Olga Vilorovna Reshetko, Vladimir Petrovich Fisenko, Igor Nikolaevich Sychev, Elena Anatolievna Grishina, Pavel Olegovich Bochkov, Roman Vladimirovich Shevchenko, Sherzod Pardaboevich Abdullaev, Natalia Pavlovna Denisenko, Dmitry Vladimirovich Ivashchenko, Zhannet Alimovna Sozaeva, Anastasia Alekseevna Kachanova","doi":"10.1097/FPC.0000000000000483","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study of ABCB1 and CYP3A4/3A5 gene polymorphism genes is promising in terms of their influence on prothrombin time variability, the residual equilibrium concentration of direct oral anticoagulants (DOACs) in patients with atrial fibrillation and the development of new personalized approaches to anticoagulation therapy in these patients. The aim of the study is to evaluate the effect of ABCB1 (rs1045642) C>T; ABCB1 (rs4148738) C>T and CYP3A5 (rs776746) A>G, CYP3A4*22(rs35599367) C>T gene polymorphisms on prothrombin time level and residual equilibrium concentration of rivaroxaban in patients with atrial fibrillation.</p><p><strong>Methods: </strong>In total 86 patients (42 men and 44 female), aged 67.24 ± 1.01 years with atrial fibrillation were enrolled in the study. HPLC mass spectrometry analysis was used to determine rivaroxaban residual equilibrium concentration. Prothrombin time data were obtained from patient records.</p><p><strong>Results: </strong>The residual equilibrium concentration of rivaroxaban in patients with ABCB1 rs4148738 CT genotype is significantly higher than in patients with ABCB1 rs4148738 CC (P = 0.039). The analysis of the combination of genotypes did not find a statistically significant role of combinations of alleles of several polymorphic markers in increasing the risk of hemorrhagic complications when taking rivaroxaban.</p><p><strong>Conclusion: </strong>Patients with ABCB1 rs4148738 CT genotype have a statistically significantly higher residual equilibrium concentration of rivaroxaban in blood than patients with ABCB1 rs4148738 CC genotype, which should be considered when assessing the risk of hemorrhagic complications and risk of drug-drug interactions. Further studies of the effect of rivaroxaban pharmacogenetics on the safety profile and efficacy of therapy are needed.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":"32 9","pages":"301-307"},"PeriodicalIF":1.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000483","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The study of ABCB1 and CYP3A4/3A5 gene polymorphism genes is promising in terms of their influence on prothrombin time variability, the residual equilibrium concentration of direct oral anticoagulants (DOACs) in patients with atrial fibrillation and the development of new personalized approaches to anticoagulation therapy in these patients. The aim of the study is to evaluate the effect of ABCB1 (rs1045642) C>T; ABCB1 (rs4148738) C>T and CYP3A5 (rs776746) A>G, CYP3A4*22(rs35599367) C>T gene polymorphisms on prothrombin time level and residual equilibrium concentration of rivaroxaban in patients with atrial fibrillation.
Methods: In total 86 patients (42 men and 44 female), aged 67.24 ± 1.01 years with atrial fibrillation were enrolled in the study. HPLC mass spectrometry analysis was used to determine rivaroxaban residual equilibrium concentration. Prothrombin time data were obtained from patient records.
Results: The residual equilibrium concentration of rivaroxaban in patients with ABCB1 rs4148738 CT genotype is significantly higher than in patients with ABCB1 rs4148738 CC (P = 0.039). The analysis of the combination of genotypes did not find a statistically significant role of combinations of alleles of several polymorphic markers in increasing the risk of hemorrhagic complications when taking rivaroxaban.
Conclusion: Patients with ABCB1 rs4148738 CT genotype have a statistically significantly higher residual equilibrium concentration of rivaroxaban in blood than patients with ABCB1 rs4148738 CC genotype, which should be considered when assessing the risk of hemorrhagic complications and risk of drug-drug interactions. Further studies of the effect of rivaroxaban pharmacogenetics on the safety profile and efficacy of therapy are needed.
期刊介绍:
Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.