Vladislav Victorovich Khrustalev, Tatyana Aleksandrovna Khrustaleva, Anna Vladimirovna Popinako
{"title":"Germline mutations directions are different between introns of the same gene: case study of the gene coding for amyloid-beta precursor protein.","authors":"Vladislav Victorovich Khrustalev, Tatyana Aleksandrovna Khrustaleva, Anna Vladimirovna Popinako","doi":"10.1007/s10709-022-00166-6","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid-beta precursor protein (APP) is highly conserved in mammals. This feature allowed us to compare nucleotide usage biases in fourfold degenerated sites along the length of its coding region for 146 species of mammals and birds in search of fragments with significant deviations. Even though cytosine usage has the highest value in fourfold degenerated sites in APP coding region from all tested placental mammals, in contrast to marsupial mammals with the bias toward thymine usage, the most frequent germline and somatic mutations in human APP coding region are C to T and G to A transitions. The same mutational AT-pressure is characteristic for germline mutations in introns of human APP gene. However, surprisingly, there are several exceptional introns with deviations in germline mutations rates. The most of those introns surround exons with exceptional biases in nucleotide usage in fourfold degenerated sites. Existence of such fragments in exons 4 and 5, as well as in exon 14, can be connected with the presence of lncRNA genes in complementary strand of DNA. Exceptional nucleotide usage bias in exons 16 and 17 that contain a sequence encoding amyloid-beta peptides can be explained either by the presence of yet unmapped lncRNA(s), or by the autonomous expression of a short mRNA that encodes just C-terminal part of the APP providing an alternative source of amyloid-beta peptides. This hypothesis is supported by the increased rate of T to C transitions in introns 16-17 and 17-18 of Human APP gene relatively to other introns.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-022-00166-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid-beta precursor protein (APP) is highly conserved in mammals. This feature allowed us to compare nucleotide usage biases in fourfold degenerated sites along the length of its coding region for 146 species of mammals and birds in search of fragments with significant deviations. Even though cytosine usage has the highest value in fourfold degenerated sites in APP coding region from all tested placental mammals, in contrast to marsupial mammals with the bias toward thymine usage, the most frequent germline and somatic mutations in human APP coding region are C to T and G to A transitions. The same mutational AT-pressure is characteristic for germline mutations in introns of human APP gene. However, surprisingly, there are several exceptional introns with deviations in germline mutations rates. The most of those introns surround exons with exceptional biases in nucleotide usage in fourfold degenerated sites. Existence of such fragments in exons 4 and 5, as well as in exon 14, can be connected with the presence of lncRNA genes in complementary strand of DNA. Exceptional nucleotide usage bias in exons 16 and 17 that contain a sequence encoding amyloid-beta peptides can be explained either by the presence of yet unmapped lncRNA(s), or by the autonomous expression of a short mRNA that encodes just C-terminal part of the APP providing an alternative source of amyloid-beta peptides. This hypothesis is supported by the increased rate of T to C transitions in introns 16-17 and 17-18 of Human APP gene relatively to other introns.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.