A Bayesian-based classification framework for financial time series trend prediction.

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Arsalan Dezhkam, Mohammad Taghi Manzuri, Ahmad Aghapour, Afshin Karimi, Ali Rabiee, Shervin Manzuri Shalmani
{"title":"A Bayesian-based classification framework for financial time series trend prediction.","authors":"Arsalan Dezhkam,&nbsp;Mohammad Taghi Manzuri,&nbsp;Ahmad Aghapour,&nbsp;Afshin Karimi,&nbsp;Ali Rabiee,&nbsp;Shervin Manzuri Shalmani","doi":"10.1007/s11227-022-04834-4","DOIUrl":null,"url":null,"abstract":"<p><p>Financial time series have been extensively studied within the past decades; however, the advent of machine learning and deep neural networks opened new horizons to apply supercomputing techniques to extract more insights from the underlying patterns of price data. This paper presents a tri-state labeling approach to classify the underlying patterns in price data into up, down and no-action classes. The introduction of a no-action state in our novel approach alleviates the burden of denoising the dataset as a preprocessing task. The performance of our labeling algorithm is experimented with using machine learning and deep learning models. The framework is augmented by applying the Bayesian optimization technique for the selection of the best tuning values of the hyperparameters. The price trend prediction module generates the required trading signals. The results show that the average annualized Sharpe ratio as the trading performance metric is about 2.823, indicating the framework produces excellent cumulative returns.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"79 4","pages":"4622-4659"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521884/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-022-04834-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 5

Abstract

Financial time series have been extensively studied within the past decades; however, the advent of machine learning and deep neural networks opened new horizons to apply supercomputing techniques to extract more insights from the underlying patterns of price data. This paper presents a tri-state labeling approach to classify the underlying patterns in price data into up, down and no-action classes. The introduction of a no-action state in our novel approach alleviates the burden of denoising the dataset as a preprocessing task. The performance of our labeling algorithm is experimented with using machine learning and deep learning models. The framework is augmented by applying the Bayesian optimization technique for the selection of the best tuning values of the hyperparameters. The price trend prediction module generates the required trading signals. The results show that the average annualized Sharpe ratio as the trading performance metric is about 2.823, indicating the framework produces excellent cumulative returns.

Abstract Image

Abstract Image

Abstract Image

基于贝叶斯的金融时间序列趋势预测分类框架。
金融时间序列在过去的几十年里得到了广泛的研究;然而,机器学习和深度神经网络的出现为应用超级计算技术从价格数据的潜在模式中提取更多见解开辟了新的视野。本文提出了一种三状态标记方法,将价格数据中的基本模式分为向上、向下和无动作类。在我们的新方法中引入了无动作状态,减轻了数据集去噪作为预处理任务的负担。我们的标记算法的性能使用机器学习和深度学习模型进行了实验。通过应用贝叶斯优化技术来选择超参数的最佳调优值,增强了该框架。价格趋势预测模块生成所需的交易信号。结果表明,作为交易绩效指标的平均年化夏普比率约为2.823,表明该框架产生了优异的累积收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Supercomputing
Journal of Supercomputing 工程技术-工程:电子与电气
CiteScore
6.30
自引率
12.10%
发文量
734
审稿时长
13 months
期刊介绍: The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs. Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信