{"title":"Blown away? Wind speed and foraging success in an acoustic predator.","authors":"Samantha Renda, Stéphanie Périquet, Aliza le Roux","doi":"10.1007/s13364-023-00673-7","DOIUrl":null,"url":null,"abstract":"<p><p>Foraging animals must contend with fluctuating environmental variables that affect foraging success, including conditions like wind noise, which could diminish the usefulness of particular sensory modes. Although the documented impact of anthropogenic noise on animal behavior has become clear, there is limited research on natural noise and its potential influence on mammalian behavior. We investigated foraging behavior in the myrmecophagous bat-eared fox (<i>Otocyon megalotis</i>), a species known to rely predominantly on hearing for prey detection. For a year, we monitored the foraging behavior of 18 bat-eared foxes from a habituated population in South Africa, amidst varying wind speeds (0-15.5 km/h). In contrast to expectations, foraging rates did not generally decline with increasing wind speed, except for foraging rate outside termite patches in fall. Furthermore, wind speed had little correlation with time spent in patches. In winter, however, we observed an increase in foraging rate with increasing wind speed both within and outside patches. At the observed wind speeds, these acoustically driven insectivores continue to forage effectively despite potentially distracting or masking noises. With anthropogenic noise producing sound across a broader frequency range, it is important to examine the responses of these canids to artificial sources of acoustic disturbance as well.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13364-023-00673-7.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13364-023-00673-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Foraging animals must contend with fluctuating environmental variables that affect foraging success, including conditions like wind noise, which could diminish the usefulness of particular sensory modes. Although the documented impact of anthropogenic noise on animal behavior has become clear, there is limited research on natural noise and its potential influence on mammalian behavior. We investigated foraging behavior in the myrmecophagous bat-eared fox (Otocyon megalotis), a species known to rely predominantly on hearing for prey detection. For a year, we monitored the foraging behavior of 18 bat-eared foxes from a habituated population in South Africa, amidst varying wind speeds (0-15.5 km/h). In contrast to expectations, foraging rates did not generally decline with increasing wind speed, except for foraging rate outside termite patches in fall. Furthermore, wind speed had little correlation with time spent in patches. In winter, however, we observed an increase in foraging rate with increasing wind speed both within and outside patches. At the observed wind speeds, these acoustically driven insectivores continue to forage effectively despite potentially distracting or masking noises. With anthropogenic noise producing sound across a broader frequency range, it is important to examine the responses of these canids to artificial sources of acoustic disturbance as well.
Supplementary information: The online version contains supplementary material available at 10.1007/s13364-023-00673-7.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.