Chen Gao, Hong Chang, Hong-Bing Zhou, Qing Liu, Ying-Chun Bai, Quan-Li Liu, Wan-Fu Bai, Song-Li Shi
{"title":"Metabolomics reveal the mechanism for anti-renal fibrosis effects of an <i>n</i>-butanol extract from <i>Amygdalus mongolica</i>.","authors":"Chen Gao, Hong Chang, Hong-Bing Zhou, Qing Liu, Ying-Chun Bai, Quan-Li Liu, Wan-Fu Bai, Song-Li Shi","doi":"10.2478/acph-2022-0023","DOIUrl":null,"url":null,"abstract":"<p><p>To reveal the mechanism of anti-renal fibrosis effects of an <i>n</i>-butanol extract from <i>Amygdalus mongolica,</i> renal fibrosis was induced with unilateral ureteral obstruction (UUO) and then treated with an <i>n</i>-butanol extract (BUT) from <i>Amygdalus mongolica</i> (Rosaceae). Sixty male Sprague-Dawley rats were randomly divided into the sham-operated, renal fibrosis (RF) model, benazepril hydrochloride-treated model (1.5 mg kg<sup>-1</sup>) and BUT-treated (1.75, 1.5 and 1.25 g kg<sup>-1</sup>) groups and the respective drugs were administered intragastrically for 21 days. Related biochemical indices in rat serum were determined and histopathological morphology observed. Serum metabolomics was assessed with HPLC-Q-TOF-MS. The BUT reduced levels of blood urea nitrogen, serum creatinine and albumin and lowered the content of malondialdehyde and hydroxyproline in tissues. The activity of superoxide dismutase in tissues was increased and an improvement in the severity of RF was observed. Sixteen possible biomarkers were identified by metabolomic analysis and six key metabolic pathways, including the TCA cycle and tyrosine metabolism, were analyzed. After treatment with the extract, 8, 12 and 9 possible biomarkers could be detected in the high-, medium- and low-dose groups, respectively. Key biomarkers of RF, identified using metabolomics, were most affected by the medium dose. <i>A. mongolica</i> BUT extract displays a protective effect on RF in rats and should be investigated as a candidate drug for the treatment of the disease.</p>","PeriodicalId":7034,"journal":{"name":"Acta Pharmaceutica","volume":"72 3","pages":"437-448"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/acph-2022-0023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1
Abstract
To reveal the mechanism of anti-renal fibrosis effects of an n-butanol extract from Amygdalus mongolica, renal fibrosis was induced with unilateral ureteral obstruction (UUO) and then treated with an n-butanol extract (BUT) from Amygdalus mongolica (Rosaceae). Sixty male Sprague-Dawley rats were randomly divided into the sham-operated, renal fibrosis (RF) model, benazepril hydrochloride-treated model (1.5 mg kg-1) and BUT-treated (1.75, 1.5 and 1.25 g kg-1) groups and the respective drugs were administered intragastrically for 21 days. Related biochemical indices in rat serum were determined and histopathological morphology observed. Serum metabolomics was assessed with HPLC-Q-TOF-MS. The BUT reduced levels of blood urea nitrogen, serum creatinine and albumin and lowered the content of malondialdehyde and hydroxyproline in tissues. The activity of superoxide dismutase in tissues was increased and an improvement in the severity of RF was observed. Sixteen possible biomarkers were identified by metabolomic analysis and six key metabolic pathways, including the TCA cycle and tyrosine metabolism, were analyzed. After treatment with the extract, 8, 12 and 9 possible biomarkers could be detected in the high-, medium- and low-dose groups, respectively. Key biomarkers of RF, identified using metabolomics, were most affected by the medium dose. A. mongolica BUT extract displays a protective effect on RF in rats and should be investigated as a candidate drug for the treatment of the disease.
期刊介绍:
AP is an international, multidisciplinary journal devoted to pharmaceutical and allied sciences and contains articles predominantly on core biomedical and health subjects. The aim of AP is to increase the impact of pharmaceutical research in academia, industry and laboratories. With strong emphasis on quality and originality, AP publishes reports from the discovery of a drug up to clinical practice. Topics covered are: analytics, biochemistry, biopharmaceutics, biotechnology, cell biology, cell cultures, clinical pharmacy, drug design, drug delivery, drug disposition, drug stability, gene technology, medicine (including diagnostics and therapy), medicinal chemistry, metabolism, molecular modeling, pharmacology (clinical and animal), peptide and protein chemistry, pharmacognosy, pharmacoepidemiology, pharmacoeconomics, pharmacodynamics and pharmacokinetics, protein design, radiopharmaceuticals, and toxicology.