Amit Ranjan, Hritik Kumar, Deepshikha Kumari, Archit Anand, Rajiv Misra
{"title":"Molecule generation toward target protein (SARS-CoV-2) using reinforcement learning-based graph neural network via knowledge graph.","authors":"Amit Ranjan, Hritik Kumar, Deepshikha Kumari, Archit Anand, Rajiv Misra","doi":"10.1007/s13721-023-00409-2","DOIUrl":null,"url":null,"abstract":"<p><p>AI-driven approaches are widely used in drug discovery, where candidate molecules are generated and tested on a target protein for binding affinity prediction. However, generating new compounds with desirable molecular properties such as Quantitative Estimate of Drug-likeness (QED) and Dopamine Receptor D2 activity (DRD2) while adhering to distinct chemical laws is challenging. To address these challenges, we proposed a graph-based deep learning framework to generate potential therapeutic drugs targeting the SARS-CoV-2 protein. Our proposed framework consists of two modules: a novel reinforcement learning (RL)-based graph generative module with knowledge graph (KG) and a graph early fusion approach (GEFA) for binding affinity prediction. The first module uses a gated graph neural network (GGNN) model under the RL environment for generating novel molecular compounds with desired properties and a custom-made KG for molecule screening. The second module uses GEFA to predict binding affinity scores between the generated compounds and target proteins. Experiments show how fine-tuning the GGNN model under the RL environment enhances the molecules with desired properties to generate <math><mrow><mn>100</mn> <mo>%</mo></mrow> </math> valid and <math><mrow><mn>100</mn> <mo>%</mo></mrow> </math> unique compounds using different scoring functions. Additionally, KG-based screening reduces the search space of generated candidate molecules by <math><mrow><mn>96.64</mn> <mo>%</mo></mrow> </math> while retaining <math><mrow><mn>95.38</mn> <mo>%</mo></mrow> </math> of promising binding molecules against SARS-CoV-2 protein, i.e., 3C-like protease (3CLpro). We achieved a binding affinity score of 8.185 from the top rank of generated compound. In addition, we compared top-ranked generated compounds to Indinavir on different parameters, including drug-likeness and medicinal chemistry, for qualitative analysis from a drug development perspective.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13721-023-00409-2.</p>","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":"12 1","pages":"13"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817447/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Modeling and Analysis in Health Informatics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13721-023-00409-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AI-driven approaches are widely used in drug discovery, where candidate molecules are generated and tested on a target protein for binding affinity prediction. However, generating new compounds with desirable molecular properties such as Quantitative Estimate of Drug-likeness (QED) and Dopamine Receptor D2 activity (DRD2) while adhering to distinct chemical laws is challenging. To address these challenges, we proposed a graph-based deep learning framework to generate potential therapeutic drugs targeting the SARS-CoV-2 protein. Our proposed framework consists of two modules: a novel reinforcement learning (RL)-based graph generative module with knowledge graph (KG) and a graph early fusion approach (GEFA) for binding affinity prediction. The first module uses a gated graph neural network (GGNN) model under the RL environment for generating novel molecular compounds with desired properties and a custom-made KG for molecule screening. The second module uses GEFA to predict binding affinity scores between the generated compounds and target proteins. Experiments show how fine-tuning the GGNN model under the RL environment enhances the molecules with desired properties to generate valid and unique compounds using different scoring functions. Additionally, KG-based screening reduces the search space of generated candidate molecules by while retaining of promising binding molecules against SARS-CoV-2 protein, i.e., 3C-like protease (3CLpro). We achieved a binding affinity score of 8.185 from the top rank of generated compound. In addition, we compared top-ranked generated compounds to Indinavir on different parameters, including drug-likeness and medicinal chemistry, for qualitative analysis from a drug development perspective.
Supplementary information: The online version contains supplementary material available at 10.1007/s13721-023-00409-2.
期刊介绍:
NetMAHIB publishes original research articles and reviews reporting how graph theory, statistics, linear algebra and machine learning techniques can be effectively used for modelling and analysis in health informatics and bioinformatics. It aims at creating a synergy between these disciplines by providing a forum for disseminating the latest developments and research findings; hence, results can be shared with readers across institutions, governments, researchers, students, and the industry. The journal emphasizes fundamental contributions on new methodologies, discoveries and techniques that have general applicability and which form the basis for network based modelling, knowledge discovery, knowledge sharing and decision support to the benefit of patients, healthcare professionals and society in traditional and advanced emerging settings, including eHealth and mHealth .