K V Satyanarayana, N Thirupathi Rao, Debnath Bhattacharyya, Yu-Chen Hu
{"title":"Identifying the presence of bacteria on digital images by using asymmetric distribution with k-means clustering algorithm.","authors":"K V Satyanarayana, N Thirupathi Rao, Debnath Bhattacharyya, Yu-Chen Hu","doi":"10.1007/s11045-021-00800-0","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is mainly aimed at the decomposition of image quality assessment study by using Three Parameter Logistic Mixture Model and k-means clustering (TPLMM-k). This method is mainly used for the analysis of various images which were related to several real time applications and for medical disease detection and diagnosis with the help of the digital images which were generated by digital microscopic camera. Several algorithms and distribution models had been developed and proposed for the segmentation of the images. Among several methods developed and proposed, the Gaussian Mixture Model (GMM) was one of the highly used models. One can say that almost the GMM was playing the key role in most of the image segmentation research works so far noticed in the literature. The main drawback with the distribution model was that this GMM model will be best fitted with a kind of data in the dataset. To overcome this problem, the TPLMM-k algorithm is proposed. The image decomposition process used in the proposed algorithm had been analyzed and its performance was analyzed with the help of various performance metrics like the Variance of Information (VOI), Global Consistency Error (GCE) and Probabilistic Rand Index (PRI). According to the results, it is shown that the proposed algorithm achieves the better performance when compared with the previous results of the previous techniques. In addition, the decomposition of the images had been improved in the proposed algorithm.</p>","PeriodicalId":19030,"journal":{"name":"Multidimensional Systems and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501939/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidimensional Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11045-021-00800-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 8
Abstract
This paper is mainly aimed at the decomposition of image quality assessment study by using Three Parameter Logistic Mixture Model and k-means clustering (TPLMM-k). This method is mainly used for the analysis of various images which were related to several real time applications and for medical disease detection and diagnosis with the help of the digital images which were generated by digital microscopic camera. Several algorithms and distribution models had been developed and proposed for the segmentation of the images. Among several methods developed and proposed, the Gaussian Mixture Model (GMM) was one of the highly used models. One can say that almost the GMM was playing the key role in most of the image segmentation research works so far noticed in the literature. The main drawback with the distribution model was that this GMM model will be best fitted with a kind of data in the dataset. To overcome this problem, the TPLMM-k algorithm is proposed. The image decomposition process used in the proposed algorithm had been analyzed and its performance was analyzed with the help of various performance metrics like the Variance of Information (VOI), Global Consistency Error (GCE) and Probabilistic Rand Index (PRI). According to the results, it is shown that the proposed algorithm achieves the better performance when compared with the previous results of the previous techniques. In addition, the decomposition of the images had been improved in the proposed algorithm.
期刊介绍:
Multidimensional Systems and Signal Processing publishes research and selective surveys papers ranging from the fundamentals to important new findings. The journal responds to and provides a solution to the widely scattered nature of publications in this area, offering unity of theme, reduced duplication of effort, and greatly enhanced communication among researchers and practitioners in the field.
A partial list of topics addressed in the journal includes multidimensional control systems design and implementation; multidimensional stability and realization theory; prediction and filtering of multidimensional processes; Spatial-temporal signal processing; multidimensional filters and filter-banks; array signal processing; and applications of multidimensional systems and signal processing to areas such as healthcare and 3-D imaging techniques.