{"title":"Driven phase transformations: A useful concept for wear studies?","authors":"Laurent Chaffron, Yann Le Bouar , Georges Martin","doi":"10.1016/S1296-2147(01)01217-3","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of driven alloys is introduced and examples are given for alloys under irradiation or under high energy ball milling. Both real and computer experiments show that the stationary configuration of alloys under external forcing depends on the overall temperature, on the ratio of the ballistic to the thermally activated atomic jump frequency, and on the space and time correlation of the ballistic jumps. As well as temperature, the description of driven phase transformations requires a new control parameter: the intensity of forcing. The latter is shown to be the irradiation flux for alloys under irradiation and the momentum transferred per unit time to an elementary volume of matter, under milling. We show how to use these concepts to address the wear rate of swift train wheels (TGV): it is found that the wear rate is proportional to the intensity of forcing.</p></div>","PeriodicalId":100307,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IV - Physics-Astrophysics","volume":"2 5","pages":"Pages 749-759"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1296-2147(01)01217-3","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IV - Physics-Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1296214701012173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The concept of driven alloys is introduced and examples are given for alloys under irradiation or under high energy ball milling. Both real and computer experiments show that the stationary configuration of alloys under external forcing depends on the overall temperature, on the ratio of the ballistic to the thermally activated atomic jump frequency, and on the space and time correlation of the ballistic jumps. As well as temperature, the description of driven phase transformations requires a new control parameter: the intensity of forcing. The latter is shown to be the irradiation flux for alloys under irradiation and the momentum transferred per unit time to an elementary volume of matter, under milling. We show how to use these concepts to address the wear rate of swift train wheels (TGV): it is found that the wear rate is proportional to the intensity of forcing.