Efficacité de l'estimateur d'erreur de Verfürt h pour la solution EF de l'équation de Helmholtz

Simona Iremie, Philippe Bouillard
{"title":"Efficacité de l'estimateur d'erreur de Verfürt h pour la solution EF de l'équation de Helmholtz","authors":"Simona Iremie,&nbsp;Philippe Bouillard","doi":"10.1016/S1287-4620(00)88418-5","DOIUrl":null,"url":null,"abstract":"<div><p>The finite element solution of Helmholtz equation is dispersive and the existent a posteriori error estimators underestimate the pollution error implied by this phenomenon. In this paper, a new type of residual estimator for the Helmholtz operator is proposed and tested on a one-dimensional model problem. The numerical results show that the error is correctly estimated but new difficulties appear in the exact evaluation of problem dependent constants.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"328 1","pages":"Pages 67-71"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)88418-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000884185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The finite element solution of Helmholtz equation is dispersive and the existent a posteriori error estimators underestimate the pollution error implied by this phenomenon. In this paper, a new type of residual estimator for the Helmholtz operator is proposed and tested on a one-dimensional model problem. The numerical results show that the error is correctly estimated but new difficulties appear in the exact evaluation of problem dependent constants.

verfurt h误差估计器对亥姆霍兹方程EF解的有效性
亥姆霍兹方程的有限元解是色散的,现有的后验误差估计器低估了这种现象所隐含的污染误差。本文提出了一种新的Helmholtz算子残差估计量,并在一维模型问题上进行了检验。数值结果表明,误差估计是正确的,但问题相关常数的精确计算出现了新的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信