Assessing the influence of fuel geometrical shape on fire dynamics simulator (FDS) predictions for a large-scale heavy goods vehicle tunnel fire experiment
Xiaoyun Wang, Charles Fleischmann, Michael Spearpoint
{"title":"Assessing the influence of fuel geometrical shape on fire dynamics simulator (FDS) predictions for a large-scale heavy goods vehicle tunnel fire experiment","authors":"Xiaoyun Wang, Charles Fleischmann, Michael Spearpoint","doi":"10.1016/j.csfs.2016.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper uses four different simple geometrical shapes to simulate a large-scale heavy goods vehicle (HGV) tunnel fire experiment using Fire Dynamics Simulator, version 6 (FDS6) in order to investigate the influence of using different fuel package shapes. Simulations also investigate the influence on temperature profiles when a large target is placed downstream of the fuel package. Predictions of flame extension, temperature profiles and gas species concentrations are compared with the experimental data. The use of the geometrical shapes causes significant differences in flame extension lengths during the fully developed fire phase. The variation in temperature predictions caused by using the different fuel shapes are insignificant when a large target is present behind the fire, however this is not the case if the target is omitted especially during the fully developed phase.</p></div>","PeriodicalId":100219,"journal":{"name":"Case Studies in Fire Safety","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfs.2016.04.001","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Fire Safety","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214398X16300012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
This paper uses four different simple geometrical shapes to simulate a large-scale heavy goods vehicle (HGV) tunnel fire experiment using Fire Dynamics Simulator, version 6 (FDS6) in order to investigate the influence of using different fuel package shapes. Simulations also investigate the influence on temperature profiles when a large target is placed downstream of the fuel package. Predictions of flame extension, temperature profiles and gas species concentrations are compared with the experimental data. The use of the geometrical shapes causes significant differences in flame extension lengths during the fully developed fire phase. The variation in temperature predictions caused by using the different fuel shapes are insignificant when a large target is present behind the fire, however this is not the case if the target is omitted especially during the fully developed phase.