Superconducting axisymmetric finite elements based on a gauged potential variational principle—II. Solution and numerical results

James J. Schuler, Carlos A. Felippa
{"title":"Superconducting axisymmetric finite elements based on a gauged potential variational principle—II. Solution and numerical results","authors":"James J. Schuler,&nbsp;Carlos A. Felippa","doi":"10.1016/0956-0521(94)90002-7","DOIUrl":null,"url":null,"abstract":"<div><p>Part II of a two part paper discusses an incremental-iterative nonlinear solution technique for solving the nonlinear finite element equations of the superconducting state of a superconductor. The untreated equations are highly ill-conditioned and are impossible to solve within the typical 16-place double precision supplied by most computers. A combination of matrix scaling and mesh grading techniques is used to reduce the condition number of the tangent stiffness matrix and increase the accuracy of the current carrying boundary layer representation. Numerical results for a one-dimensional model of a time-independent superconductor treated by the Ginzburg-Landau model are presented and discussed. The computed solutions clearly display the Meissner effect of magnetic field expulsion from the central region of the superconductor. These results are compared to the physics of a low-viscosity fluid problem. From this analogy, a physical argument is advanced about the macroscopic behavior of superconductors.</p></div>","PeriodicalId":100325,"journal":{"name":"Computing Systems in Engineering","volume":"5 3","pages":"Pages 227-237"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0956-0521(94)90002-7","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing Systems in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0956052194900027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Part II of a two part paper discusses an incremental-iterative nonlinear solution technique for solving the nonlinear finite element equations of the superconducting state of a superconductor. The untreated equations are highly ill-conditioned and are impossible to solve within the typical 16-place double precision supplied by most computers. A combination of matrix scaling and mesh grading techniques is used to reduce the condition number of the tangent stiffness matrix and increase the accuracy of the current carrying boundary layer representation. Numerical results for a one-dimensional model of a time-independent superconductor treated by the Ginzburg-Landau model are presented and discussed. The computed solutions clearly display the Meissner effect of magnetic field expulsion from the central region of the superconductor. These results are compared to the physics of a low-viscosity fluid problem. From this analogy, a physical argument is advanced about the macroscopic behavior of superconductors.

基于测量电位变分原理的超导轴对称有限元2。解和数值结果
本文的第二部分讨论了求解超导体超导态非线性有限元方程的增量迭代非线性求解技术。未经处理的方程是高度病态的,不可能在大多数计算机提供的典型16位双精度范围内求解。采用矩阵缩放和网格分级相结合的方法,减少了切向刚度矩阵的条件个数,提高了载流边界层表示的精度。本文给出并讨论了用金兹堡-朗道模型处理一维时间无关超导体模型的数值结果。计算结果清楚地显示了超导体中心区域磁场驱逐的迈斯纳效应。这些结果与低粘度流体问题的物理性质进行了比较。从这个类比出发,提出了一个关于超导体宏观行为的物理论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信