{"title":"Processing, microstructure and mechanical properties of 25 vol% YAG-Al2O3 nanocomposites","authors":"W.Q Li , L Gao","doi":"10.1016/S0965-9773(99)00396-7","DOIUrl":null,"url":null,"abstract":"<div><p>A co-precipitation method was investigated to manufacture 25 vol% YAG-Al<sub>2</sub>O<sub>3</sub> nanocomposites with excellent strength characteristics at room temperature. The as-prepared powders were sintered by hot-pressing in N<sub>2</sub> to nearly full density with heating rate of 10°Cmin<sup>−1</sup><span><span> to 1400°C for 1h and at 30MPa pressure. The microstructure was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and transmission electron microscope (TEM). Microstructural results of hot-pressed composites reveal that the intergranular </span>YAG grains of micrometer size (≈800nm) were dispersed at the grain boundaries of a dense Al</span><sub>2</sub>O<sub>3</sub> matrix, and most fine grain YAG grains of nanometric size (≈100nm) were entrapped within the Al<sub>2</sub>O<sub>3</sub><span> grains in the composite. The room temperature fracture strength and fracture toughness of the hot-pressed composites were 611MPa and 4.53MPa·m</span><sup>−1/2</sup>, respectively. These strength and fracture toughness values are higher than those reported in other studies for YAG-Al<sub>2</sub>O<sub>3</sub><span> system. It is proposed that the improvement of mechanical property of hot-pressed nanocomposites is due to the reduction of the grain size of the matrix and the improved strength of the grain boundaries in 25 vol% YAG-Al</span><sub>2</sub>O<sub>3</sub> nanocomposite.</p></div>","PeriodicalId":18878,"journal":{"name":"Nanostructured Materials","volume":"11 8","pages":"Pages 1073-1080"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0965-9773(99)00396-7","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanostructured Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965977399003967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58
Abstract
A co-precipitation method was investigated to manufacture 25 vol% YAG-Al2O3 nanocomposites with excellent strength characteristics at room temperature. The as-prepared powders were sintered by hot-pressing in N2 to nearly full density with heating rate of 10°Cmin−1 to 1400°C for 1h and at 30MPa pressure. The microstructure was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and transmission electron microscope (TEM). Microstructural results of hot-pressed composites reveal that the intergranular YAG grains of micrometer size (≈800nm) were dispersed at the grain boundaries of a dense Al2O3 matrix, and most fine grain YAG grains of nanometric size (≈100nm) were entrapped within the Al2O3 grains in the composite. The room temperature fracture strength and fracture toughness of the hot-pressed composites were 611MPa and 4.53MPa·m−1/2, respectively. These strength and fracture toughness values are higher than those reported in other studies for YAG-Al2O3 system. It is proposed that the improvement of mechanical property of hot-pressed nanocomposites is due to the reduction of the grain size of the matrix and the improved strength of the grain boundaries in 25 vol% YAG-Al2O3 nanocomposite.