Torsten Porwol, Wilhelm Ehleben, Verena Brand, Helmut Acker
{"title":"Tissue oxygen sensor function of NADPH oxidase isoforms, an unusual cytochrome aa3 and reactive oxygen species","authors":"Torsten Porwol, Wilhelm Ehleben, Verena Brand, Helmut Acker","doi":"10.1016/S0034-5687(01)00310-3","DOIUrl":null,"url":null,"abstract":"<div><p>NADPH oxidase isoforms with different gp91phox subunits as well as an unusual cytochrome aa3 with a heme a/a3 relationship of 9:91 are discussed as putative oxygen sensor proteins influencing gene expression and ion channel conductivity. Reactive oxygen species (ROS) are important second messengers of the oxygen sensing signal cascade determining the stability of transcription factors or the gating of ion channels. The formation of ROS by a perinuclear Fenton reaction is imaged by 1 and 2 photon confocal microscopy revealing mitochondrial and non-mitochondrial generation.</p></div>","PeriodicalId":20976,"journal":{"name":"Respiration physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0034-5687(01)00310-3","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiration physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034568701003103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56
Abstract
NADPH oxidase isoforms with different gp91phox subunits as well as an unusual cytochrome aa3 with a heme a/a3 relationship of 9:91 are discussed as putative oxygen sensor proteins influencing gene expression and ion channel conductivity. Reactive oxygen species (ROS) are important second messengers of the oxygen sensing signal cascade determining the stability of transcription factors or the gating of ion channels. The formation of ROS by a perinuclear Fenton reaction is imaged by 1 and 2 photon confocal microscopy revealing mitochondrial and non-mitochondrial generation.