Development and applications of spectrophotometric methods for quantitative determination of caroverine in pharmaceutical pure and tablet formulations

Asad Raza, Tariq Mahmood Ansari
{"title":"Development and applications of spectrophotometric methods for quantitative determination of caroverine in pharmaceutical pure and tablet formulations","authors":"Asad Raza,&nbsp;Tariq Mahmood Ansari","doi":"10.1016/j.ancr.2015.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes two simple and novel analytical methods by using spectrophotometric technique for the determination of caroverine a spasmolytic drug in pharmaceutical formulations. The first (A) is a direct method in which analysis of the pure drug was carried out at its <em>λ</em><sub>max</sub> 304<!--> <!-->nm in ethanol solvent. The method was linear from 0.5 to 18<!--> <!-->μg/ml with correlation coefficient of 0.999 and molar absorptivity of 5.55<!--> <!-->×<!--> <!-->10<sup>4</sup> <!-->L<!--> <!-->mole<sup>−1</sup> <!-->cm<sup>−1</sup>. Limit of detection and limit of quantification were 0.44 and 1.47<!--> <!-->μg/ml. While the second method (B) is based on the charge transfer reaction between caroverine as n-electron donor and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as pi-acceptor resulting in highly colored stable complex, which showed maximum absorption band at wavelength of 525<!--> <!-->nm. The thermodynamic parameters were calculated as association constant <em>K</em><sub>CT</sub> of 7.53<!--> <!-->×<!--> <!-->10<sup>4</sup> <!-->mol<sup>−1</sup> and Gibbs free energy Δ<em>G</em>° of −6.72<!--> <!-->kJ<!--> <!-->mol<sup>−1</sup>. Different variables affecting the charge transfer reaction were carefully studied and optimized. At the optimum reaction conditions, Beer’s law was obeyed in a concentration range of 1–35<!--> <!-->μg<!--> <!-->ml<sup>−1</sup> with molar absorptivity of 1.17<!--> <!-->×<!--> <!-->10<sup>4</sup> <!-->L<!--> <!-->mole<sup>−1</sup> <!-->cm<sup>−1</sup> and correlation coefficient of 0.9999. The proposed methods were validated according to ICH guidelines.</p></div>","PeriodicalId":7819,"journal":{"name":"Analytical Chemistry Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ancr.2015.03.004","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214181215000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes two simple and novel analytical methods by using spectrophotometric technique for the determination of caroverine a spasmolytic drug in pharmaceutical formulations. The first (A) is a direct method in which analysis of the pure drug was carried out at its λmax 304 nm in ethanol solvent. The method was linear from 0.5 to 18 μg/ml with correlation coefficient of 0.999 and molar absorptivity of 5.55 × 104 L mole−1 cm−1. Limit of detection and limit of quantification were 0.44 and 1.47 μg/ml. While the second method (B) is based on the charge transfer reaction between caroverine as n-electron donor and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as pi-acceptor resulting in highly colored stable complex, which showed maximum absorption band at wavelength of 525 nm. The thermodynamic parameters were calculated as association constant KCT of 7.53 × 104 mol−1 and Gibbs free energy ΔG° of −6.72 kJ mol−1. Different variables affecting the charge transfer reaction were carefully studied and optimized. At the optimum reaction conditions, Beer’s law was obeyed in a concentration range of 1–35 μg ml−1 with molar absorptivity of 1.17 × 104 L mole−1 cm−1 and correlation coefficient of 0.9999. The proposed methods were validated according to ICH guidelines.

分光光度法定量测定药物纯制剂和片剂中胡萝卜碱的研究与应用
本文介绍了两种简便、新颖的分光光度法测定制剂中解痉药卡罗弗碱的方法。第一种(A)是直接法,纯药物在乙醇溶剂中在λmax 304 nm处进行分析。该方法在0.5 ~ 18 μg/ml范围内呈线性关系,相关系数为0.999,摩尔吸光度为5.55 × 104 L mol−1 cm−1。检测限和定量限分别为0.44和1.47 μg/ml。而第二种方法(B)是基于胡萝卜碱作为n电子供体与7,7,8,8-四氰喹诺二甲烷(TCNQ)作为pi受体之间的电荷转移反应,得到高度着色的稳定配合物,该配合物在波长525 nm处显示出最大吸收带。热力学参数计算为缔合常数KCT为7.53 × 104 mol−1,吉布斯自由能ΔG°为- 6.72 kJ mol−1。对影响电荷转移反应的各种因素进行了仔细的研究和优化。在最佳反应条件下,溶液浓度在1 ~ 35 μ ml−1范围内符合比尔定律,摩尔吸光度为1.17 × 104 L mol−1 cm−1,相关系数为0.9999。根据ICH指南对建议的方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信