Formation of manufacturing cells by cluster-seeking algorithms

P.H. Gu, H.A. ElMaraghy
{"title":"Formation of manufacturing cells by cluster-seeking algorithms","authors":"P.H. Gu,&nbsp;H.A. ElMaraghy","doi":"10.1016/0378-3804(89)90048-X","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents three cluster-seeking algorithms - K-means, Revised K-means and Isodata - for formation of part families and machine cells. These algorithms are based on the concept of pattern recognition and are capable of producing variable size, mutually independent groups of parts and/or machines without excluding exceptional components. These algorithms are compared with existing grouping algorithms, and examples are used to demonstrate the effect of clustering criteria on the final solutions. It has been found that the Isodata algorithm is more efficient and more flexible than existing machine/components matrix manipulation techniques.</p></div>","PeriodicalId":100801,"journal":{"name":"Journal of Mechanical Working Technology","volume":"20 ","pages":"Pages 403-413"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0378-3804(89)90048-X","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Working Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/037838048990048X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents three cluster-seeking algorithms - K-means, Revised K-means and Isodata - for formation of part families and machine cells. These algorithms are based on the concept of pattern recognition and are capable of producing variable size, mutually independent groups of parts and/or machines without excluding exceptional components. These algorithms are compared with existing grouping algorithms, and examples are used to demonstrate the effect of clustering criteria on the final solutions. It has been found that the Isodata algorithm is more efficient and more flexible than existing machine/components matrix manipulation techniques.

基于聚类搜索算法的制造单元的形成
本文提出了三种聚类搜索算法- K-means、修正K-means和Isodata -用于零件族和机器单元的形成。这些算法基于模式识别的概念,能够生产不同尺寸、相互独立的零件和/或机器组,而不排除特殊组件。将这些算法与现有的分组算法进行了比较,并用实例说明了聚类准则对最终解的影响。研究发现,Isodata算法比现有的机器/组件矩阵操作技术更有效、更灵活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信