Stabilizing a supervised bot detection algorithm: How much data is needed for consistent predictions?

Q1 Social Sciences
Lynnette Hui Xian Ng, Dawn C. Robertson, Kathleen M. Carley
{"title":"Stabilizing a supervised bot detection algorithm: How much data is needed for consistent predictions?","authors":"Lynnette Hui Xian Ng,&nbsp;Dawn C. Robertson,&nbsp;Kathleen M. Carley","doi":"10.1016/j.osnem.2022.100198","DOIUrl":null,"url":null,"abstract":"<div><p>Social media bots have been characterized in their use in digital activism and information manipulation, due to their roles in information diffusion. The detection of bots has been a major task within the field of social media computation, and many datasets and bot detection algorithms have been developed. With these algorithms, the bot score stability is key in estimating the impact of bots on the diffusion of information. Within several experiments on Twitter agents, we quantify the amount of data required for consistent bot predictions and analyze agent bot classification behavior. Through this study, we developed a methodology to establish parameters for stabilizing the bot probability score through threshold, temporal and volume analysis, eventually quantifying suitable threshold values for bot classification (i.e. whether the agent is a bot or not) and reasonable data collection size (i.e. number of days of tweets or number of tweets) for stable scores and bot classification.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468696422000027/pdfft?md5=879d4a241d8634d464a12524eaf23546&pid=1-s2.0-S2468696422000027-main.pdf","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696422000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 17

Abstract

Social media bots have been characterized in their use in digital activism and information manipulation, due to their roles in information diffusion. The detection of bots has been a major task within the field of social media computation, and many datasets and bot detection algorithms have been developed. With these algorithms, the bot score stability is key in estimating the impact of bots on the diffusion of information. Within several experiments on Twitter agents, we quantify the amount of data required for consistent bot predictions and analyze agent bot classification behavior. Through this study, we developed a methodology to establish parameters for stabilizing the bot probability score through threshold, temporal and volume analysis, eventually quantifying suitable threshold values for bot classification (i.e. whether the agent is a bot or not) and reasonable data collection size (i.e. number of days of tweets or number of tweets) for stable scores and bot classification.

稳定监督机器人检测算法:需要多少数据才能实现一致的预测?
由于社交媒体机器人在信息传播中的作用,它们在数字行动主义和信息操纵中使用的特点。机器人的检测一直是社交媒体计算领域的一项主要任务,已经开发了许多数据集和机器人检测算法。在这些算法中,机器人得分的稳定性是评估机器人对信息传播影响的关键。在Twitter代理的几个实验中,我们量化了一致的bot预测所需的数据量,并分析了代理bot分类行为。通过本研究,我们开发了一种方法,通过阈值、时间和体积分析来建立稳定机器人概率得分的参数,最终量化出适合机器人分类的阈值(即代理是否是机器人)和合理的数据收集规模(即推文天数或推文数量),以稳定得分和机器人分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信