Brittney N. Keel, William T. Oliver, John W. Keele, Amanda K. Lindholm-Perry
{"title":"Evaluation of transcript assembly in multiple porcine tissues suggests optimal sequencing depth for RNA-Seq using total RNA library","authors":"Brittney N. Keel, William T. Oliver, John W. Keele, Amanda K. Lindholm-Perry","doi":"10.1016/j.angen.2020.200105","DOIUrl":null,"url":null,"abstract":"<div><p>RNA sequencing (RNA-Seq) libraries are prepared by either selecting poly(A) messenger RNAs (mRNA-Seq) or by depleting total RNA of highly abundant ribosomal RNAs (total RNA-Seq). The ribosomal RNA (rRNA) depletion protocols offer an attractive option for novel transcript discovery, as they facilitate the simultaneous characterization of polyadenylated and non-polyadenylated RNAs, including non-coding RNAs. However, the cost associated with total RNA-Seq is much greater than that of mRNA-Seq. Hence, the determination of an optimal target sequencing depth for total RNA-Seq would assist researchers in optimizing the cost-effectiveness of their experiments. In this study, we evaluate the appropriate depth of sequencing needed for transcriptome profiling in total RNA-Seq using a random sampling method to generate varying levels of sequencing depth in three different porcine tissues. As expected, our results indicated that the depth of sequencing has the greatest effect on the identification and quantification of lowly expressed transcripts. We propose that a depth of 80 M reads per library is desirable to identify and quantify expression of transcripts across the genome. The protocol used in this study can be utilized to determine optimal sequencing depth in other tissues and/or species.</p></div>","PeriodicalId":7893,"journal":{"name":"Animal Gene","volume":"17 ","pages":"Article 200105"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.angen.2020.200105","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352406520300051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6
Abstract
RNA sequencing (RNA-Seq) libraries are prepared by either selecting poly(A) messenger RNAs (mRNA-Seq) or by depleting total RNA of highly abundant ribosomal RNAs (total RNA-Seq). The ribosomal RNA (rRNA) depletion protocols offer an attractive option for novel transcript discovery, as they facilitate the simultaneous characterization of polyadenylated and non-polyadenylated RNAs, including non-coding RNAs. However, the cost associated with total RNA-Seq is much greater than that of mRNA-Seq. Hence, the determination of an optimal target sequencing depth for total RNA-Seq would assist researchers in optimizing the cost-effectiveness of their experiments. In this study, we evaluate the appropriate depth of sequencing needed for transcriptome profiling in total RNA-Seq using a random sampling method to generate varying levels of sequencing depth in three different porcine tissues. As expected, our results indicated that the depth of sequencing has the greatest effect on the identification and quantification of lowly expressed transcripts. We propose that a depth of 80 M reads per library is desirable to identify and quantify expression of transcripts across the genome. The protocol used in this study can be utilized to determine optimal sequencing depth in other tissues and/or species.
Animal GeneAgricultural and Biological Sciences-Insect Science
自引率
0.00%
发文量
16
期刊介绍:
Gene Reports publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses. Gene Reports strives to be a very diverse journal and topics in all fields will be considered for publication. Although not limited to the following, some general topics include: DNA Organization, Replication & Evolution -Focus on genomic DNA (chromosomal organization, comparative genomics, DNA replication, DNA repair, mobile DNA, mitochondrial DNA, chloroplast DNA). Expression & Function - Focus on functional RNAs (microRNAs, tRNAs, rRNAs, mRNA splicing, alternative polyadenylation) Regulation - Focus on processes that mediate gene-read out (epigenetics, chromatin, histone code, transcription, translation, protein degradation). Cell Signaling - Focus on mechanisms that control information flow into the nucleus to control gene expression (kinase and phosphatase pathways controlled by extra-cellular ligands, Wnt, Notch, TGFbeta/BMPs, FGFs, IGFs etc.) Profiling of gene expression and genetic variation - Focus on high throughput approaches (e.g., DeepSeq, ChIP-Seq, Affymetrix microarrays, proteomics) that define gene regulatory circuitry, molecular pathways and protein/protein networks. Genetics - Focus on development in model organisms (e.g., mouse, frog, fruit fly, worm), human genetic variation, population genetics, as well as agricultural and veterinary genetics. Molecular Pathology & Regenerative Medicine - Focus on the deregulation of molecular processes in human diseases and mechanisms supporting regeneration of tissues through pluripotent or multipotent stem cells.