Quantitative human gait analysis

V. Zanchi, V. Papić, M. Cecić
{"title":"Quantitative human gait analysis","authors":"V. Zanchi,&nbsp;V. Papić,&nbsp;M. Cecić","doi":"10.1016/S0928-4869(00)00014-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the methodology for normal gait recognition and estimation is described. Normal gait recognition is derived on the basis of kinematics data of the human locomotion system. Measurements were carried out and the data were processed and statistically analyzed.</p><p>The procedure was done on a group of 20 students. Kinematics data have been presented in phase plane. Sets of data in phase plane for the specific discrete moments in time were statistically processed using the Gaussian and Bootstrap methods. Discrete moments are chosen according to specific gait phases of a gait cycle. Finally, as a result of statistical analysis, the gait quality index (GQI) is obtained for each gait phase.</p></div>","PeriodicalId":101162,"journal":{"name":"Simulation Practice and Theory","volume":"8 1","pages":"Pages 127-139"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0928-4869(00)00014-8","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Practice and Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928486900000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper, the methodology for normal gait recognition and estimation is described. Normal gait recognition is derived on the basis of kinematics data of the human locomotion system. Measurements were carried out and the data were processed and statistically analyzed.

The procedure was done on a group of 20 students. Kinematics data have been presented in phase plane. Sets of data in phase plane for the specific discrete moments in time were statistically processed using the Gaussian and Bootstrap methods. Discrete moments are chosen according to specific gait phases of a gait cycle. Finally, as a result of statistical analysis, the gait quality index (GQI) is obtained for each gait phase.

定量人体步态分析
本文描述了正常步态的识别和估计方法。正常步态识别是在人体运动系统运动学数据的基础上导出的。进行测量,对数据进行处理和统计分析。这项手术是在20名学生身上进行的。运动学数据以相平面表示。采用高斯和Bootstrap方法对特定离散时刻的相平面数据集进行统计处理。根据步态周期的特定步态阶段选择离散矩。最后,通过统计分析得到各步态阶段的步态质量指数(GQI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信