Integrating computer-based de novo drug design and multidimensional filtering for desirable drugs

Jun Shimada , Sean Ekins , Carl Elkin , Eugene I. Shakhnovich , Jean-Pierre Wery
{"title":"Integrating computer-based de novo drug design and multidimensional filtering for desirable drugs","authors":"Jun Shimada ,&nbsp;Sean Ekins ,&nbsp;Carl Elkin ,&nbsp;Eugene I. Shakhnovich ,&nbsp;Jean-Pierre Wery","doi":"10.1016/S1477-3627(02)02274-2","DOIUrl":null,"url":null,"abstract":"<div><p><span>In the pharmaceutical industry today, many of the potent compounds discovered using expensive technologies are eventually rejected because of poor physicochemical or absorption, distribution, metabolism, excretion and toxicology (ADME/Tox) properties. This problem can be addressed by placing fast and accurate computational technologies at the heart of drug discovery. Chemically diverse and potent compounds generated by </span><em>de novo</em><span> design algorithms are scored for ADME/Tox properties using rigorously validated statistical models. Every molecule passing through this </span><em>in silico</em> pipeline is thus associated with a wealth of predicted properties, thereby allowing for rapid assessment to determine which molecule should be further developed. Critical to this idea is a platform that allows for the efficient exchange of <em>in silico</em> and experimental data between all scientists regardless of specialization. By bridging the gap between the <em>in silico</em> and experimental cultures in this fashion, an information-driven, cost-effective drug discovery program can be realized.</p></div>","PeriodicalId":101208,"journal":{"name":"TARGETS","volume":"1 6","pages":"Pages 196-205"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1477-3627(02)02274-2","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TARGETS","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1477362702022742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In the pharmaceutical industry today, many of the potent compounds discovered using expensive technologies are eventually rejected because of poor physicochemical or absorption, distribution, metabolism, excretion and toxicology (ADME/Tox) properties. This problem can be addressed by placing fast and accurate computational technologies at the heart of drug discovery. Chemically diverse and potent compounds generated by de novo design algorithms are scored for ADME/Tox properties using rigorously validated statistical models. Every molecule passing through this in silico pipeline is thus associated with a wealth of predicted properties, thereby allowing for rapid assessment to determine which molecule should be further developed. Critical to this idea is a platform that allows for the efficient exchange of in silico and experimental data between all scientists regardless of specialization. By bridging the gap between the in silico and experimental cultures in this fashion, an information-driven, cost-effective drug discovery program can be realized.

将基于计算机的药物设计与理想药物的多维筛选相结合
在今天的制药工业中,许多使用昂贵技术发现的强效化合物由于物理化学或吸收、分布、代谢、排泄和毒理学(ADME/Tox)特性差而最终被拒绝。这个问题可以通过将快速和准确的计算技术置于药物发现的核心来解决。由从头设计算法生成的化学多样性和强效化合物使用严格验证的统计模型对ADME/Tox特性进行评分。因此,通过这种硅管道的每个分子都与丰富的预测性质相关联,从而允许快速评估以确定应该进一步开发的分子。这个想法的关键是一个平台,允许所有科学家之间有效地交换计算机和实验数据,而不考虑专业。通过以这种方式弥合计算机和实验文化之间的差距,可以实现信息驱动,具有成本效益的药物发现计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信