Connecting planar linear chains in the spatial N-body problem

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guowei Yu
{"title":"Connecting planar linear chains in the spatial N-body problem","authors":"Guowei Yu","doi":"10.1016/j.anihpc.2020.10.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>The family of planar linear chains are found as collision-free action minimizers of the spatial </span><em>N</em>-body problem with equal masses under <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>×</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-symmetry constraint and different types of topological constraints. This generalizes a previous result by the author in <span>[32]</span> for the planar <em>N</em>-body problem. In particular, the monotone constraints required in <span>[32]</span> are proven to be unnecessary, as it will be implied by the action minimization property.</p><p><span><span>For each type of topological constraints, by considering the corresponding action minimization problem in a coordinate frame rotating around the vertical axis at a constant </span>angular velocity </span><em>ω</em>, we find an entire family of simple choreographies (seen in the rotating frame), as <em>ω</em> changes from 0 to <em>N</em>. Such a family starts from one planar linear chain and ends at another (seen in the original non-rotating frame). The action minimizer is collision-free, when <span><math><mi>ω</mi><mo>=</mo><mn>0</mn></math></span> or <em>N</em>, but may contain collision for <span><math><mn>0</mn><mo>&lt;</mo><mi>ω</mi><mo>&lt;</mo><mi>N</mi></math></span>. However it can only contain binary collisions and the corresponding collision solutions are <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> block-regularizable.</p><p>These families of solutions can be seen as a generalization of Marchal's <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>12</mn></mrow></msub></math></span> family for <span><math><mi>N</mi><mo>=</mo><mn>3</mn></math></span> to arbitrary <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>. In particular, for certain types of topological constraints, based on results from <span>[3]</span> and <span>[7]</span>, we show that when <em>ω</em> belongs to some sub-intervals of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>]</mo></math></span>, the corresponding minimizer must be a rotating regular <em>N</em>-gon contained in the horizontal plane.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.10.004","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920301086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

The family of planar linear chains are found as collision-free action minimizers of the spatial N-body problem with equal masses under DN and DN×Z2-symmetry constraint and different types of topological constraints. This generalizes a previous result by the author in [32] for the planar N-body problem. In particular, the monotone constraints required in [32] are proven to be unnecessary, as it will be implied by the action minimization property.

For each type of topological constraints, by considering the corresponding action minimization problem in a coordinate frame rotating around the vertical axis at a constant angular velocity ω, we find an entire family of simple choreographies (seen in the rotating frame), as ω changes from 0 to N. Such a family starts from one planar linear chain and ends at another (seen in the original non-rotating frame). The action minimizer is collision-free, when ω=0 or N, but may contain collision for 0<ω<N. However it can only contain binary collisions and the corresponding collision solutions are C0 block-regularizable.

These families of solutions can be seen as a generalization of Marchal's P12 family for N=3 to arbitrary N3. In particular, for certain types of topological constraints, based on results from [3] and [7], we show that when ω belongs to some sub-intervals of [0,N], the corresponding minimizer must be a rotating regular N-gon contained in the horizontal plane.

空间n体问题中平面线性链的连接
在DN和DN×Z2-symmetry约束以及不同类型的拓扑约束条件下,发现平面线性链族是等质量空间n体问题的无碰撞作用最小值。这推广了作者在[32]中关于平面n体问题的一个结果。特别是,[32]中要求的单调约束被证明是不必要的,因为它将由动作最小化属性隐含。对于每种类型的拓扑约束,通过考虑在以恒定角速度ω绕垂直轴旋转的坐标系中相应的动作最小化问题,我们找到了一个完整的简单编排族(见旋转坐标系),当ω从0到n变化时,这个族从一个平面线性链开始,到另一个平面线性链结束(见原始非旋转坐标系)。当ω=0或N时,动作最小化器是无碰撞的,但在ω=0 <ω<N时可能包含碰撞。但是它只能包含二进制碰撞,并且对应的碰撞解是C0块可正则化的。这些解族可以看作是将N=3的Marchal's P12族推广到任意N≥3。特别地,对于某些类型的拓扑约束,基于[3]和[7]的结果,我们证明了当ω属于[0,N]的某些子区间时,相应的最小化器必须是包含在水平面中的旋转规则N-gon。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信