Precomputed fast rejection ray-triangle intersection

Thomas Alois Pichler , Andrej Ferko , Michal Ferko , Peter Kán , Hannes Kaufmann
{"title":"Precomputed fast rejection ray-triangle intersection","authors":"Thomas Alois Pichler ,&nbsp;Andrej Ferko ,&nbsp;Michal Ferko ,&nbsp;Peter Kán ,&nbsp;Hannes Kaufmann","doi":"10.1016/j.gvc.2022.200047","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a ray-triangle intersection algorithm with fast-rejection strategies. We intersect the ray with the triangle plane, then transform the intersection problem into 2D by applying a transformation matrix to the ray-plane intersection point. For 2D transformation, we study two different approaches. The first approach uses a transformation matrix which transforms the triangle into a unit triangle. Then, simple 2D tests are performed. The second approach transforms the triangle into a 2D triangle while preserving similarity. This allows us to prune (i.e., to clip away) areas surrounding the triangle, determining whether the transformed intersection point lies within the triangle. We discuss several optimizations for this pruning approach. We implemented both approaches into the CPU-based ray-tracing framework PBRT, version 3, and we performed a time-based comparison against PBRT’s default intersection algorithm and Baldwin and Weber’s algorithm. The results show that our algorithms are faster than the default algorithm. They are comparable to or slightly slower than Baldwin and Weber’s algorithm, however, the pruning approach produces watertight results and may be further optimized. Moreover, additional CPU/GPU experiments outside of PBRT document promising speedup over the standard Möller–Trumbore algorithm in areas like ray-casting or collision detection.</p></div>","PeriodicalId":100592,"journal":{"name":"Graphics and Visual Computing","volume":"6 ","pages":"Article 200047"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666629422000031/pdfft?md5=5e3bada7afa09685d487d9affa26921f&pid=1-s2.0-S2666629422000031-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphics and Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666629422000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a ray-triangle intersection algorithm with fast-rejection strategies. We intersect the ray with the triangle plane, then transform the intersection problem into 2D by applying a transformation matrix to the ray-plane intersection point. For 2D transformation, we study two different approaches. The first approach uses a transformation matrix which transforms the triangle into a unit triangle. Then, simple 2D tests are performed. The second approach transforms the triangle into a 2D triangle while preserving similarity. This allows us to prune (i.e., to clip away) areas surrounding the triangle, determining whether the transformed intersection point lies within the triangle. We discuss several optimizations for this pruning approach. We implemented both approaches into the CPU-based ray-tracing framework PBRT, version 3, and we performed a time-based comparison against PBRT’s default intersection algorithm and Baldwin and Weber’s algorithm. The results show that our algorithms are faster than the default algorithm. They are comparable to or slightly slower than Baldwin and Weber’s algorithm, however, the pruning approach produces watertight results and may be further optimized. Moreover, additional CPU/GPU experiments outside of PBRT document promising speedup over the standard Möller–Trumbore algorithm in areas like ray-casting or collision detection.

Abstract Image

预先计算的快速拒绝射线-三角形相交
提出了一种具有快速抑制策略的射线-三角形相交算法。我们将射线与三角形平面相交,然后通过对射线与平面交点应用变换矩阵将相交问题转化为二维问题。对于二维变换,我们研究了两种不同的方法。第一种方法使用变换矩阵将三角形变换成单位三角形。然后,进行简单的二维测试。第二种方法将三角形转换为二维三角形,同时保持相似度。这允许我们修剪(即剪掉)三角形周围的区域,确定转换后的交点是否位于三角形内。我们讨论了这种修剪方法的几个优化。我们将这两种方法都实现到基于cpu的光线追踪框架PBRT,版本3中,并对PBRT的默认交叉算法和Baldwin和Weber的算法进行了基于时间的比较。结果表明,我们的算法比默认算法更快。它们与Baldwin和Weber的算法相当或略慢,但是,修剪方法可以产生无懈可击的结果,并且可以进一步优化。此外,PBRT之外的其他CPU/GPU实验证明,在光线投射或碰撞检测等领域,它比标准Möller-Trumbore算法的速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信