A large-scale clinical validation study using nCapp cloud plus terminal by frontline doctors for the rapid diagnosis of COVID-19 and COVID-19 pneumonia in China
Dawei Yang , Tao Xu , Xun Wang , Deng Chen , Ziqiang Zhang , Lichuan Zhang , Jie Liu , Kui Xiao , Li Bai , Yong Zhang , Lin Zhao , Lin Tong , Chaomin Wu , Yaoli Wang , Chunling Dong , Maosong Ye , Yu Xu , Zhenju Song , Hong Chen , Jing Li , Chunxue Bai
{"title":"A large-scale clinical validation study using nCapp cloud plus terminal by frontline doctors for the rapid diagnosis of COVID-19 and COVID-19 pneumonia in China","authors":"Dawei Yang , Tao Xu , Xun Wang , Deng Chen , Ziqiang Zhang , Lichuan Zhang , Jie Liu , Kui Xiao , Li Bai , Yong Zhang , Lin Zhao , Lin Tong , Chaomin Wu , Yaoli Wang , Chunling Dong , Maosong Ye , Yu Xu , Zhenju Song , Hong Chen , Jing Li , Chunxue Bai","doi":"10.1016/j.ceh.2022.07.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The outbreak of coronavirus disease 2019 (COVID-19) has become a global pandemic acute infectious disease, especially with the features of possible asymptomatic carriers and high contagiousness. Currently, it is difficult to quickly identify asymptomatic cases or COVID-19 patients with pneumonia due to limited access to reverse transcription-polymerase chain reaction (RT-PCR) nucleic acid tests and CT scans.</p></div><div><h3>Goal</h3><p>This study aimed to develop a scientific and rigorous clinical diagnostic tool for the rapid prediction of COVID-19 cases based on a COVID-19 clinical case database in China, and to assist doctors to efficiently and precisely diagnose asymptomatic COVID-19 patients and cases who had a false-negative RT-PCR test result.</p></div><div><h3>Methods</h3><p>With online consent, and the approval of the ethics committee of Zhongshan Hospital Fudan University (NCT04275947, B2020-032R) to ensure that patient privacy is protected, clinical information has been uploaded in real-time through the New Coronavirus Intelligent Auto-diagnostic Assistant Application of cloud plus terminal (nCapp) by doctors from different cities (Wuhan, Shanghai, Harbin, Dalian, Wuxi, Qingdao, Rizhao, and Bengbu) during the COVID-19 outbreak in China. By quality control and data anonymization on the platform, a total of 3,249 cases from COVID-19 high-risk groups were collected. The effects of different diagnostic factors were ranked based on the results from a single factor analysis, with 0.05 as the significance level for factor inclusion and 0.1 as the significance level for factor exclusion. Independent variables were selected by the step-forward multivariate logistic regression analysis to obtain the probability model.</p></div><div><h3>Findings</h3><p>We applied the statistical method of a multivariate regression model to the training dataset (1,624 cases) and developed a prediction model for COVID-19 with 9 clinical indicators that are accessible. The area under the receiver operating characteristic (ROC) curve (AUC) for the model was 0.88 (95% CI: 0.86, 0.89) in the training dataset and 0.84 (95% CI: 0.82, 0.86) in the validation dataset (1,625 cases).</p></div><div><h3>Discussion</h3><p>With the assistance of nCapp, a mobile-based diagnostic tool developed from a large database that we collected from COVID-19 high-risk groups in China, frontline doctors can rapidly identify asymptomatic patients and avoid misdiagnoses of cases with false-negative RT-PCR results.</p></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"5 ","pages":"Pages 79-90"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588914122000193/pdfft?md5=02394802925daa4218c01fe3c828ae4d&pid=1-s2.0-S2588914122000193-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588914122000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Background
The outbreak of coronavirus disease 2019 (COVID-19) has become a global pandemic acute infectious disease, especially with the features of possible asymptomatic carriers and high contagiousness. Currently, it is difficult to quickly identify asymptomatic cases or COVID-19 patients with pneumonia due to limited access to reverse transcription-polymerase chain reaction (RT-PCR) nucleic acid tests and CT scans.
Goal
This study aimed to develop a scientific and rigorous clinical diagnostic tool for the rapid prediction of COVID-19 cases based on a COVID-19 clinical case database in China, and to assist doctors to efficiently and precisely diagnose asymptomatic COVID-19 patients and cases who had a false-negative RT-PCR test result.
Methods
With online consent, and the approval of the ethics committee of Zhongshan Hospital Fudan University (NCT04275947, B2020-032R) to ensure that patient privacy is protected, clinical information has been uploaded in real-time through the New Coronavirus Intelligent Auto-diagnostic Assistant Application of cloud plus terminal (nCapp) by doctors from different cities (Wuhan, Shanghai, Harbin, Dalian, Wuxi, Qingdao, Rizhao, and Bengbu) during the COVID-19 outbreak in China. By quality control and data anonymization on the platform, a total of 3,249 cases from COVID-19 high-risk groups were collected. The effects of different diagnostic factors were ranked based on the results from a single factor analysis, with 0.05 as the significance level for factor inclusion and 0.1 as the significance level for factor exclusion. Independent variables were selected by the step-forward multivariate logistic regression analysis to obtain the probability model.
Findings
We applied the statistical method of a multivariate regression model to the training dataset (1,624 cases) and developed a prediction model for COVID-19 with 9 clinical indicators that are accessible. The area under the receiver operating characteristic (ROC) curve (AUC) for the model was 0.88 (95% CI: 0.86, 0.89) in the training dataset and 0.84 (95% CI: 0.82, 0.86) in the validation dataset (1,625 cases).
Discussion
With the assistance of nCapp, a mobile-based diagnostic tool developed from a large database that we collected from COVID-19 high-risk groups in China, frontline doctors can rapidly identify asymptomatic patients and avoid misdiagnoses of cases with false-negative RT-PCR results.