The Yun transform in probabilistic and statistical contexts: Weibull baseline case and its applications in reliability theory

Christophe Chesneau , M. Girish Babu , Hassan S. Bakouch
{"title":"The Yun transform in probabilistic and statistical contexts: Weibull baseline case and its applications in reliability theory","authors":"Christophe Chesneau ,&nbsp;M. Girish Babu ,&nbsp;Hassan S. Bakouch","doi":"10.1016/j.jcmds.2021.100002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a new family of distributions based on a particular case of a transform introduced by Yun (2014). Among others, this transform demonstrates great flexibility and nice mathematical properties which can be useful in a statistical context (continuous derivatives of all order, simplicity of the inverse transform, etc.). We propose a new three-parameter distribution from this family, namely the Yun–Weibull (YW) distribution. Some statistical properties of this distribution are studied, involving flexible hazard rate shapes. Subsequently, the statistical inference of the YW distribution is investigated. The parameters are estimated by employing the maximum likelihood estimation method. We establish the existence and uniqueness of the obtained estimators. The YW distribution is applied to fit two practical data sets. As a main result of our analysis, the new distribution is found to be more appropriate to these data sets than other competitive distributions. Moreover, the uniqueness of the parameter estimates of the YW distribution is studied using the profile log-likelihood function visually under the two practical data sets.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"1 ","pages":"Article 100002"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcmds.2021.100002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415821000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a new family of distributions based on a particular case of a transform introduced by Yun (2014). Among others, this transform demonstrates great flexibility and nice mathematical properties which can be useful in a statistical context (continuous derivatives of all order, simplicity of the inverse transform, etc.). We propose a new three-parameter distribution from this family, namely the Yun–Weibull (YW) distribution. Some statistical properties of this distribution are studied, involving flexible hazard rate shapes. Subsequently, the statistical inference of the YW distribution is investigated. The parameters are estimated by employing the maximum likelihood estimation method. We establish the existence and uniqueness of the obtained estimators. The YW distribution is applied to fit two practical data sets. As a main result of our analysis, the new distribution is found to be more appropriate to these data sets than other competitive distributions. Moreover, the uniqueness of the parameter estimates of the YW distribution is studied using the profile log-likelihood function visually under the two practical data sets.

概率和统计背景下的Yun变换:威布尔基线情况及其在可靠性理论中的应用
在本文中,我们基于Yun(2014)引入的一个变换的特殊情况提出了一个新的分布族。除此之外,这个变换展示了极大的灵活性和良好的数学性质,这在统计上下文中很有用(所有阶的连续导数,逆变换的简单性等)。我们提出了一个新的三参数分布,即Yun-Weibull (YW)分布。研究了该分布的一些统计性质,包括灵活的危险率形状。随后,对YW分布的统计推断进行了研究。采用极大似然估计法对参数进行估计。我们证明了所得到的估计量的存在唯一性。应用YW分布拟合两个实际数据集。我们分析的主要结果是,发现新的分布比其他竞争分布更适合这些数据集。此外,在两个实际数据集下,利用剖面对数似然函数直观地研究了YW分布参数估计的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信