Neural networks as smooth priors for inverse problems for PDEs

Jens Berg, Kaj Nyström
{"title":"Neural networks as smooth priors for inverse problems for PDEs","authors":"Jens Berg,&nbsp;Kaj Nyström","doi":"10.1016/j.jcmds.2021.100008","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we discuss the potential of using artificial neural networks as smooth priors in classical methods for inverse problems for PDEs. Exploring that neural networks are global and smooth function approximators, the idea is that neural networks could act as attractive priors for the coefficients to be estimated from noisy data. We illustrate the capabilities of neural networks in the context of the Poisson equation and we show that the neural network approach show robustness with respect to noisy, incomplete data and with respect to mesh and geometry.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"1 ","pages":"Article 100008"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415821000043/pdfft?md5=08c6cc3f4e5c45de91102c997960531d&pid=1-s2.0-S2772415821000043-main.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415821000043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we discuss the potential of using artificial neural networks as smooth priors in classical methods for inverse problems for PDEs. Exploring that neural networks are global and smooth function approximators, the idea is that neural networks could act as attractive priors for the coefficients to be estimated from noisy data. We illustrate the capabilities of neural networks in the context of the Poisson equation and we show that the neural network approach show robustness with respect to noisy, incomplete data and with respect to mesh and geometry.

神经网络作为PDEs逆问题的平滑先验
本文讨论了在经典方法中使用人工神经网络作为光滑先验来求解偏微分方程反问题的可能性。探索神经网络是全局光滑函数逼近器,其思想是神经网络可以作为从噪声数据中估计系数的吸引先验。我们在泊松方程的背景下说明了神经网络的能力,并表明神经网络方法在噪声、不完整数据以及网格和几何方面表现出鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信