FeGaB(25 nm)/Al2O3/FeGaB(25 nm) Multilayer Structures: Effects of Variation of Al2O3Thickness on Static and Dynamic Magnetic Properties

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shahid Imran , Yin Ge , Yuan Jun , Ma Yungui , He Sailing
{"title":"FeGaB(25 nm)/Al2O3/FeGaB(25 nm) Multilayer Structures: Effects of Variation of Al2O3Thickness on Static and Dynamic Magnetic Properties","authors":"Shahid Imran ,&nbsp;Yin Ge ,&nbsp;Yuan Jun ,&nbsp;Ma Yungui ,&nbsp;He Sailing","doi":"10.1016/S1875-5372(18)30164-4","DOIUrl":null,"url":null,"abstract":"<div><p>Iron-gallium (FeGa) thin film has the unique advantages in designing integrated magnetic sensors or chips due to its relatively large magnetostrictive constant compared with other soft magnetic materials. In this work, non-magnetic doping and laminating methods have been employed to control the magnetic and electric properties of this alloy film. By doping a certain amount of boron (B), the coercivities are largely decreased for samples of thickness less than ∼30 nm. For thicker films, we find that inserting an ultrathin Al<sub>2</sub>O<sub>3</sub> middle layer is very helpful to control the coercivities with negligible influence on saturation magnetization (<em>M</em><sub><strong>s</strong></sub>). The smallest easy-axis coercivity of 0.98×79.6 A/m is obtained in the multilayer film FeGaB(25 nm)/Al<sub>2</sub>O<sub>3</sub>(0.5 nm)/FeGaB(25 nm). In this case, the resistivity is enhanced by 1.5 times compared with the 50 nm single layer film. Structural characterizations indicate the reductions of crystalline quality and physical dimension of the magnetic grains playing important roles in softening the magnetic properties. Besides, the influences of magnetostatic interaction and morphology characteristics are also considered in facilitating domain reversal. High permeability spectra with gigahertz response are obtained for our multilayer films. The methodology applied here, i.e., enhancing magnetic and electric performance by introducing ultrathin non-magnetic layers, could be translated to other species of soft magnetic materials as well.</p></div>","PeriodicalId":21056,"journal":{"name":"稀有金属材料与工程","volume":"47 7","pages":"Pages 1951-1957"},"PeriodicalIF":0.6000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30164-4","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"稀有金属材料与工程","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875537218301644","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Iron-gallium (FeGa) thin film has the unique advantages in designing integrated magnetic sensors or chips due to its relatively large magnetostrictive constant compared with other soft magnetic materials. In this work, non-magnetic doping and laminating methods have been employed to control the magnetic and electric properties of this alloy film. By doping a certain amount of boron (B), the coercivities are largely decreased for samples of thickness less than ∼30 nm. For thicker films, we find that inserting an ultrathin Al2O3 middle layer is very helpful to control the coercivities with negligible influence on saturation magnetization (Ms). The smallest easy-axis coercivity of 0.98×79.6 A/m is obtained in the multilayer film FeGaB(25 nm)/Al2O3(0.5 nm)/FeGaB(25 nm). In this case, the resistivity is enhanced by 1.5 times compared with the 50 nm single layer film. Structural characterizations indicate the reductions of crystalline quality and physical dimension of the magnetic grains playing important roles in softening the magnetic properties. Besides, the influences of magnetostatic interaction and morphology characteristics are also considered in facilitating domain reversal. High permeability spectra with gigahertz response are obtained for our multilayer films. The methodology applied here, i.e., enhancing magnetic and electric performance by introducing ultrathin non-magnetic layers, could be translated to other species of soft magnetic materials as well.

FeGaB(25nm)/Al2O3/FeGaB(25nm)多层结构:Al2O3厚度变化对静态和动态磁性能的影响
与其他软磁材料相比,铁镓(FeGa)薄膜具有较大的磁致伸缩常数,在设计集成磁传感器或芯片方面具有独特的优势。在本研究中,采用非磁性掺杂和层压的方法来控制合金薄膜的磁性和电学性能。通过掺杂一定量的硼(B),厚度小于~ 30 nm的样品矫顽力大大降低。对于较厚的薄膜,我们发现插入超薄Al2O3中间层非常有助于控制矫顽力,对饱和磁化强度(Ms)的影响可以忽略不计。FeGaB(25 nm)/Al2O3(0.5 nm)/FeGaB(25 nm)多层膜的易轴矫顽力最小,为0.98×79.6 A/m。在这种情况下,电阻率比50 nm单层膜提高了1.5倍。结构表征表明,磁性颗粒的晶粒质量和物理尺寸的减小对软化磁性能起重要作用。此外,还考虑了静磁相互作用和形貌特征对畴反转的影响。我们的多层薄膜获得了具有千兆赫响应的高磁导率谱。这里应用的方法,即通过引入超薄非磁性层来增强磁性和电性能,也可以转化为其他种类的软磁材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
稀有金属材料与工程
稀有金属材料与工程 工程技术-材料科学:综合
CiteScore
1.30
自引率
57.10%
发文量
17973
审稿时长
4.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信