P-stable eighth algebraic order methods for the numerical solution of the Schrödinger equation

A. Konguetsof, T.E. Simos
{"title":"P-stable eighth algebraic order methods for the numerical solution of the Schrödinger equation","authors":"A. Konguetsof,&nbsp;T.E. Simos","doi":"10.1016/S0097-8485(01)00085-7","DOIUrl":null,"url":null,"abstract":"<div><p>A P-stable method of algebraic order eight for the approximate numerical integration of the Schrödinger equation is developed in this paper. Since the method is P-stable (i.e. its interval of periodicity is equal to (0, ∞)), large step sizes for the numerical integration can be used. Based on this new method and on a sixth algebraic order P-stable method developed by Simos (Phys. Scripta 55 (1997) 644–650), a new variable step method is obtained. Numerical results presented for the phase-shift problem of the radial Schrödinger equation and for the coupled differential equations arising from the Schrödinger equation show the efficiency of the developed method.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 2","pages":"Pages 105-111"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00085-7","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501000857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A P-stable method of algebraic order eight for the approximate numerical integration of the Schrödinger equation is developed in this paper. Since the method is P-stable (i.e. its interval of periodicity is equal to (0, ∞)), large step sizes for the numerical integration can be used. Based on this new method and on a sixth algebraic order P-stable method developed by Simos (Phys. Scripta 55 (1997) 644–650), a new variable step method is obtained. Numerical results presented for the phase-shift problem of the radial Schrödinger equation and for the coupled differential equations arising from the Schrödinger equation show the efficiency of the developed method.

Schrödinger方程数值解的p稳定八阶代数方法
本文提出了求解Schrödinger方程近似数值积分的8阶p稳定方法。由于该方法是p稳定的(即其周期区间等于(0,∞)),因此可以使用较大的步长进行数值积分。基于这种新方法和Simos (Phys)提出的六阶p稳定方法。Scripta 55(1997) 644-650),得到了一种新的变步长法。对径向Schrödinger方程的相移问题和由Schrödinger方程引起的耦合微分方程的数值计算结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信