Radial basis function neural network based QSPR for the prediction of critical pressures of substituted benzenes

Xiaojun Yao , Xiaoyun Zhang , Ruisheng Zhang , Mancang Liu , Zhide Hu , Botao Fan
{"title":"Radial basis function neural network based QSPR for the prediction of critical pressures of substituted benzenes","authors":"Xiaojun Yao ,&nbsp;Xiaoyun Zhang ,&nbsp;Ruisheng Zhang ,&nbsp;Mancang Liu ,&nbsp;Zhide Hu ,&nbsp;Botao Fan","doi":"10.1016/S0097-8485(01)00093-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Quantitative Structure–Property Relationship (QSPR) method is used to develop the correlation between structures of a great number of substituted benzenes and their critical pressure. Molecular descriptors calculated from structure alone were used to represent molecular structures. A subset of the calculated descriptors selected using forward stepwise regression was used in the QSPR model development. Multiple Linear Regression and Radial Basis Function Neural Networks are utilized to construct the linear and non-linear prediction model, respectively. To obtain good prediction ability, both topological structure and training parameters of radial basis function neural networks are optimized. The prediction result agrees well with the experimental value of these properties.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 2","pages":"Pages 159-169"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00093-6","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501000936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The Quantitative Structure–Property Relationship (QSPR) method is used to develop the correlation between structures of a great number of substituted benzenes and their critical pressure. Molecular descriptors calculated from structure alone were used to represent molecular structures. A subset of the calculated descriptors selected using forward stepwise regression was used in the QSPR model development. Multiple Linear Regression and Radial Basis Function Neural Networks are utilized to construct the linear and non-linear prediction model, respectively. To obtain good prediction ability, both topological structure and training parameters of radial basis function neural networks are optimized. The prediction result agrees well with the experimental value of these properties.

基于径向基函数神经网络的QSPR取代苯临界压力预测
采用定量构效关系(QSPR)方法研究了大量取代苯的结构与临界压力之间的关系。仅从分子结构计算分子描述符来表示分子结构。使用正向逐步回归选择的计算描述符子集用于QSPR模型开发。利用多元线性回归和径向基函数神经网络分别构建线性和非线性预测模型。为了获得较好的预测能力,对径向基函数神经网络的拓扑结构和训练参数进行了优化。预测结果与实验值吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信