Central chemosensitivity of respiration: a brief overview

David Ballantyne, Peter Scheid
{"title":"Central chemosensitivity of respiration: a brief overview","authors":"David Ballantyne,&nbsp;Peter Scheid","doi":"10.1016/S0034-5687(01)00297-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this introductory article we make use of the work reviewed in detail by a number of contributors to this Special Issue (Respir. Physiol., 2001) to provide an outline of current approaches to identifying brainstem CO<sub>2</sub>/pH-chemosensitive neurones. The section headings which we have adopted are intended to reflect particular issues rather than experimental techniques, though some of these issues arise out of the choice of preparation and the advantages and limitations which follow from such a choice. We have also considered whether, in spite of the diversity in the kinds of neurones usually considered to be chemosensitive, there are any indications for shared or uniform features. Again, this is based on the material published together in this volume. Finally, and more speculatively, we suggest that the dendritic organization of chemosensitive neurones may play an important role in chemoreception, not simply as a means of sampling the stimulus but also as a way of compartmentalizing the effects of pH in relation to other aspects of a neurone's activity.</p></div>","PeriodicalId":20976,"journal":{"name":"Respiration physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0034-5687(01)00297-3","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiration physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034568701002973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

In this introductory article we make use of the work reviewed in detail by a number of contributors to this Special Issue (Respir. Physiol., 2001) to provide an outline of current approaches to identifying brainstem CO2/pH-chemosensitive neurones. The section headings which we have adopted are intended to reflect particular issues rather than experimental techniques, though some of these issues arise out of the choice of preparation and the advantages and limitations which follow from such a choice. We have also considered whether, in spite of the diversity in the kinds of neurones usually considered to be chemosensitive, there are any indications for shared or uniform features. Again, this is based on the material published together in this volume. Finally, and more speculatively, we suggest that the dendritic organization of chemosensitive neurones may play an important role in chemoreception, not simply as a means of sampling the stimulus but also as a way of compartmentalizing the effects of pH in relation to other aspects of a neurone's activity.

呼吸中枢化学敏感性:简要概述
在这篇介绍性的文章中,我们将使用由本期特刊(Respir)的许多贡献者详细审查的工作。杂志。, 2001),概述了目前识别脑干二氧化碳/ ph化学敏感神经元的方法。我们采用的章节标题旨在反映特定的问题,而不是实验性的技术,尽管其中一些问题是由准备的选择以及这种选择所带来的优点和局限性引起的。我们还考虑了,尽管通常被认为具有化学敏感性的神经元种类多样,但是否有任何迹象表明它们具有共同或统一的特征。同样,这是基于本卷中一起出版的材料。最后,更具推测性的是,我们认为化学敏感神经元的树突组织可能在化学接受中发挥重要作用,不仅仅是作为对刺激进行采样的一种手段,而且还作为一种区分pH值对神经元活动其他方面影响的方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信