Relative Entropy Model of Uncertain Random Shortest Path

Gang Shi , Yuhong Sheng , Qing Cui
{"title":"Relative Entropy Model of Uncertain Random Shortest Path","authors":"Gang Shi ,&nbsp;Yuhong Sheng ,&nbsp;Qing Cui","doi":"10.1016/j.enavi.2015.06.008","DOIUrl":null,"url":null,"abstract":"<div><p>The shortest path problem is one of network optimization problems. This paper considers a shortest path problem under the situation where lengths of arcs in a network include both uncertainty and randomness, and focuses on the case that the lengths of arcs are expressed by uncertain random variables. This paper presents a new type of model: relative entropy model of shortest path. By the definition of relative entropy of the uncertain random variables, relative entropy model of shortest path problem is proposed to find the shortest path which fully reflects uncertain and random information. This model is formulated to find a shortest path whose chance distribution minimizes the difference from the ideal one. A numerical example is given to illustrate the model's effectiveness.</p></div>","PeriodicalId":100696,"journal":{"name":"International Journal of e-Navigation and Maritime Economy","volume":"2 ","pages":"Pages 87-100"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.enavi.2015.06.008","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of e-Navigation and Maritime Economy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405535215000625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The shortest path problem is one of network optimization problems. This paper considers a shortest path problem under the situation where lengths of arcs in a network include both uncertainty and randomness, and focuses on the case that the lengths of arcs are expressed by uncertain random variables. This paper presents a new type of model: relative entropy model of shortest path. By the definition of relative entropy of the uncertain random variables, relative entropy model of shortest path problem is proposed to find the shortest path which fully reflects uncertain and random information. This model is formulated to find a shortest path whose chance distribution minimizes the difference from the ideal one. A numerical example is given to illustrate the model's effectiveness.

不确定随机最短路径的相对熵模型
最短路径问题是网络优化问题之一。本文研究了网络中圆弧长度同时具有不确定性和随机性的最短路径问题,重点研究了圆弧长度用不确定随机变量表示的情况。提出了一种新的模型:最短路径的相对熵模型。通过对不确定随机变量的相对熵的定义,提出了最短路径问题的相对熵模型,以寻找充分反映不确定和随机信息的最短路径。该模型的建立是为了寻找一条最短路径,其机会分布使与理想路径的差异最小。算例说明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信