Permanents of cyclic (0,1) matrices

N. Metropolis, M.L. Stein, P.R. Stein
{"title":"Permanents of cyclic (0,1) matrices","authors":"N. Metropolis,&nbsp;M.L. Stein,&nbsp;P.R. Stein","doi":"10.1016/S0021-9800(69)80058-X","DOIUrl":null,"url":null,"abstract":"<div><p>An efficient method is presented for evaluating the permanents <em>P<sub>n</sub><sup>k</sup></em> of cyclic (0,1) matrices of dimension <em>n</em> and common row and column sum <em>k</em>. A general method is developed for finding recurrence rules for <em>P<sub>n</sub><sup>k</sup></em> (<em>k</em> fixed); the recurrence rules are given in semiexplicit form for the range 4≤<em>k</em>≤9. A table of <em>P<sub>n</sub><sup>k</sup></em> is included for the range 4≤<em>k</em>≤9, <em>k</em>≤<em>n</em>≤80. The <em>P<sub>n</sub><sup>k</sup></em> are calculated in the form<span><span><span><math><mrow><msubsup><mi>P</mi><mi>n</mi><mo>k</mo></msubsup><mo>=</mo><mn>2</mn><mo>+</mo><mstyle><munderover><mo>∑</mo><mrow><mi>τ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mo>[</mo><mstyle><mfrac><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mstyle><mo>]</mo></mrow></munderover><mrow><msubsup><mi>T</mi><mi>τ</mi><mo>k</mo></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mstyle></mrow></math></span></span></span>where the <em>T<sub>t</sub><sup>k</sup>(n)</em> satisfy recurrence rules given symbolically by the characteristic equations of certain (0, 1) matrices <em>Π<sub>r</sub><sup>k</sup></em>; the latter turn out to be identical with the <em>r</em>-th permanental compounds of certain simpler matrices <em>Π<sub>1</sub><sup>k</sup></em>. Finally, formal expressions for <em>P<sub>n</sub><sup>k</sup></em> are given which allow one to write down the solution to the generalized Ménage Problem in terms of sums over scalar products of the iterates of a set of unit vectors.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"7 4","pages":"Pages 291-321"},"PeriodicalIF":0.0000,"publicationDate":"1969-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(69)80058-X","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002198006980058X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

An efficient method is presented for evaluating the permanents Pnk of cyclic (0,1) matrices of dimension n and common row and column sum k. A general method is developed for finding recurrence rules for Pnk (k fixed); the recurrence rules are given in semiexplicit form for the range 4≤k≤9. A table of Pnk is included for the range 4≤k≤9, kn≤80. The Pnk are calculated in the formPnk=2+τ1[k12]Tτk(n)where the Ttk(n) satisfy recurrence rules given symbolically by the characteristic equations of certain (0, 1) matrices Πrk; the latter turn out to be identical with the r-th permanental compounds of certain simpler matrices Π1k. Finally, formal expressions for Pnk are given which allow one to write down the solution to the generalized Ménage Problem in terms of sums over scalar products of the iterates of a set of unit vectors.

循环(0,1)矩阵的永久元
给出了求维数为n的循环(0,1)矩阵的恒量Pnk的一种有效方法,并给出了求Pnk (k固定)的递归规则的一般方法;以半显式形式给出了4≤k≤9范围内的递归规则。在4≤k≤9,k≤n≤80范围内,包含一个Pnk表。Pnk的计算形式为:Pnk=2+∑τ−1[k−12]τk(n),其中Ttk(n)满足由某些(0,1)矩阵的特征方程符号化地给出的递归规则Πrk;后者与某些更简单的矩阵的r-永久化合物相同Π1k。最后,给出了Pnk的形式表达式,它允许人们用单位向量集合的迭代的标量积的和的形式写出广义msamnage问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信