Translation of first order formulas into ground formulas via a completion theory

Q1 Mathematics
Robert Demolombe, Luis Fariñas del Cerro, Naji Obeid
{"title":"Translation of first order formulas into ground formulas via a completion theory","authors":"Robert Demolombe,&nbsp;Luis Fariñas del Cerro,&nbsp;Naji Obeid","doi":"10.1016/j.jal.2016.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>A translation technique is presented which transforms a class of First Order Logic formulas, called Restricted formulas, into ground formulas. For the formulas in this class the range of quantified variables is restricted by Domain formulas.</p><p>If we have a complete knowledge of the predicates involved in the Domain formulas their extensions can be evaluated with the Relational Algebra and these extensions are used to transform universal (respectively existential) quantifiers into finite conjunctions (respectively disjunctions).</p><p>It is assumed that the complete knowledge is represented by Completion Axioms and Unique Name Axioms à la Reiter. These axioms involve the equality predicate. However, the translation allows to remove the equality in the ground formulas and for a large class of formulas their consequences are the same as the initial First Order formulas. This result open the door for the design of efficient deduction techniques.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"15 ","pages":"Pages 130-149"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.02.002","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

A translation technique is presented which transforms a class of First Order Logic formulas, called Restricted formulas, into ground formulas. For the formulas in this class the range of quantified variables is restricted by Domain formulas.

If we have a complete knowledge of the predicates involved in the Domain formulas their extensions can be evaluated with the Relational Algebra and these extensions are used to transform universal (respectively existential) quantifiers into finite conjunctions (respectively disjunctions).

It is assumed that the complete knowledge is represented by Completion Axioms and Unique Name Axioms à la Reiter. These axioms involve the equality predicate. However, the translation allows to remove the equality in the ground formulas and for a large class of formulas their consequences are the same as the initial First Order formulas. This result open the door for the design of efficient deduction techniques.

通过补全理论将一阶公式转化为基公式
提出了一种将一类一阶逻辑公式(称为限制公式)转换为基公式的转换技术。对于这类公式,量化变量的范围受定义域公式的限制。如果我们完全了解域公式中涉及的谓词,则可以用关系代数计算它们的扩展,并使用这些扩展将全称(分别为存在)量词转换为有限连词(分别为断取)。假设完整的知识由补全公理和唯一名称公理表示。这些公理包含等式谓词。然而,这种转换允许消除基本公式中的等式,并且对于一大类公式,它们的结果与初始一阶公式相同。这一结果为高效演绎技术的设计打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信