Georges Trinquier, Aude Simon, Mathias Rapacioli, Florent Xavier Gadéa
{"title":"PAH chemistry at eV internal energies. 1. H-shifted isomers","authors":"Georges Trinquier, Aude Simon, Mathias Rapacioli, Florent Xavier Gadéa","doi":"10.1016/j.molap.2017.02.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>The PAH family of organic compounds (polycyclic aromatic hydrocarbons), involved in several fields of </span>chemistry<span>, has received particular attention in astrochemistry, where their </span></span>vibrational spectroscopy, thermodynamics, dynamics, and fragmentation properties are now abundantly documented. This survey aims at drawing trends for low spin-multiplicity surfaces of PAHs bearing internal energies in the range 1–10</span> <span><span>eV. It addresses some typical alternatives to the ground-state regular structures of PAHs, making explicit possible intramolecular rearrangements leading to high-lying minima. These isomerisations should be taken into consideration when addressing PAH processing in astrophysical conditions. The first part of this double-entry study focuses on the hydrogen-shifted forms, which bear both a </span>carbene<span> center and a saturated carbon. It rests upon DFT<span> calculations mainly performed on two emblematic PAH representatives, coronene and pyrene, in their neutral and mono- and multi-cationic states. Systematically searched for in neutral species, these H-shifted minima are lying 4–5</span></span></span> <!-->eV above the regular all-conjugated forms, and are separated by barriers of about 1<!--> <!-->eV. General hydrogen-shifting is found to be easier for cationic species as the relative energies of their H-shifted minima are 1–1.5<!--> <span>eV lower than those for neutral species. As much as possible, classical knowledge and concepts of organic chemistry such as aromaticity and Clar's rules are invoked for result interpretation.</span></p></div>","PeriodicalId":44164,"journal":{"name":"Molecular Astrophysics","volume":"7 ","pages":"Pages 27-36"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molap.2017.02.001","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405675816300094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 15
Abstract
The PAH family of organic compounds (polycyclic aromatic hydrocarbons), involved in several fields of chemistry, has received particular attention in astrochemistry, where their vibrational spectroscopy, thermodynamics, dynamics, and fragmentation properties are now abundantly documented. This survey aims at drawing trends for low spin-multiplicity surfaces of PAHs bearing internal energies in the range 1–10eV. It addresses some typical alternatives to the ground-state regular structures of PAHs, making explicit possible intramolecular rearrangements leading to high-lying minima. These isomerisations should be taken into consideration when addressing PAH processing in astrophysical conditions. The first part of this double-entry study focuses on the hydrogen-shifted forms, which bear both a carbene center and a saturated carbon. It rests upon DFT calculations mainly performed on two emblematic PAH representatives, coronene and pyrene, in their neutral and mono- and multi-cationic states. Systematically searched for in neutral species, these H-shifted minima are lying 4–5 eV above the regular all-conjugated forms, and are separated by barriers of about 1 eV. General hydrogen-shifting is found to be easier for cationic species as the relative energies of their H-shifted minima are 1–1.5 eV lower than those for neutral species. As much as possible, classical knowledge and concepts of organic chemistry such as aromaticity and Clar's rules are invoked for result interpretation.
期刊介绍:
Molecular Astrophysics is a peer-reviewed journal containing full research articles, selected review articles, and thematic issues. Molecular Astrophysics is a new journal where researchers working in planetary and exoplanetary science, astrochemistry, astrobiology, spectroscopy, physical chemistry and chemical physics can meet and exchange their ideas. Understanding the origin and evolution of interstellar and circumstellar molecules is key to understanding the Universe around us and our place in it and has become a fundamental goal of modern astrophysics. Molecular Astrophysics aims to provide a platform for scientists studying the chemical processes that form and dissociate molecules, and control chemical abundances in the universe, particularly in Solar System objects including planets, moons, and comets, in the atmospheres of exoplanets, as well as in regions of star and planet formation in the interstellar medium of galaxies. Observational studies of the molecular universe are driven by a range of new space missions and large-scale scale observatories opening up. With the Spitzer Space Telescope, the Herschel Space Observatory, the Atacama Large Millimeter/submillimeter Array (ALMA), NASA''s Kepler mission, the Rosetta mission, and more major future facilities such as NASA''s James Webb Space Telescope and various missions to Mars, the journal taps into the expected new insights and the need to bring the various communities together on one platform. The journal aims to cover observational, laboratory as well as computational results in the galactic, extragalactic and intergalactic areas of our universe.