The Navier–Stokes limit for the Boltzmann equation

François Golse , Laure Saint-Raymond
{"title":"The Navier–Stokes limit for the Boltzmann equation","authors":"François Golse ,&nbsp;Laure Saint-Raymond","doi":"10.1016/S0764-4442(01)02136-X","DOIUrl":null,"url":null,"abstract":"<div><p>Appropriately scaled families of DiPerna–Lions renormalized solutions of the Boltzmann equation are shown to have fluctuations whose limit points (in the weak L<sup>1</sup> topology) are governed by a Leray solution of the limiting Navier–Stokes equations. This completes the arguments in Bardos–Golse–Levermore [Commun. on Pure and Appl. Math. 46 (5) (1993) 667–753] for the steady case, extended by Lions–Masmoudi [Arch. Ration. Mech. Anal. 158 (3) (2001) 173–193] to the time-dependent case.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 9","pages":"Pages 897-902"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02136-X","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S076444420102136X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Appropriately scaled families of DiPerna–Lions renormalized solutions of the Boltzmann equation are shown to have fluctuations whose limit points (in the weak L1 topology) are governed by a Leray solution of the limiting Navier–Stokes equations. This completes the arguments in Bardos–Golse–Levermore [Commun. on Pure and Appl. Math. 46 (5) (1993) 667–753] for the steady case, extended by Lions–Masmoudi [Arch. Ration. Mech. Anal. 158 (3) (2001) 173–193] to the time-dependent case.

玻尔兹曼方程的纳维-斯托克斯极限
玻尔兹曼方程的适当缩放的DiPerna-Lions重整化解族显示具有波动,其极限点(在弱L1拓扑中)由极限Navier-Stokes方程的Leray解控制。这就完成了Bardos-Golse-Levermore [common]中的论证。在Pure和apple上。数学,46(5)(1993)667-753]对于稳定情况,由Lions-Masmoudi [Arch。配给。动力机械。肛门,158(3)(2001)173-193]的时间依赖的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信