Stability of equilibria uniformly in the inviscid limit for the Navier-Stokes-Poisson system

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Frédéric Rousset, Changzhen Sun
{"title":"Stability of equilibria uniformly in the inviscid limit for the Navier-Stokes-Poisson system","authors":"Frédéric Rousset,&nbsp;Changzhen Sun","doi":"10.1016/j.anihpc.2020.11.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>We prove a stability result of constant equilibria<span> for the three dimensional Navier-Stokes-Poisson system uniform in the inviscid limit. We allow the initial density to be close to a constant and the potential part of the initial velocity to be small independently of the rescaled viscosity parameter </span></span><em>ε</em> while the incompressible part of the initial velocity is assumed to be small compared to <em>ε</em>. We then get a unique global smooth solution. We also prove a uniform in <em>ε</em> time decay rate for these solutions. Our approach allows to combine the parabolic energy estimates that are efficient for the viscous equation at <em>ε</em> fixed and the dispersive techniques (dispersive estimates and normal forms) that are useful for the inviscid irrotational system.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.11.004","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920301153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

We prove a stability result of constant equilibria for the three dimensional Navier-Stokes-Poisson system uniform in the inviscid limit. We allow the initial density to be close to a constant and the potential part of the initial velocity to be small independently of the rescaled viscosity parameter ε while the incompressible part of the initial velocity is assumed to be small compared to ε. We then get a unique global smooth solution. We also prove a uniform in ε time decay rate for these solutions. Our approach allows to combine the parabolic energy estimates that are efficient for the viscous equation at ε fixed and the dispersive techniques (dispersive estimates and normal forms) that are useful for the inviscid irrotational system.

Navier-Stokes-Poisson系统在无粘极限下均匀平衡的稳定性
我们证明了三维Navier-Stokes-Poisson系统在无粘极限下均匀的常平衡的稳定性结果。我们允许初始密度接近于一个常数,并且初始速度的势能部分较小,与重新标度的粘度参数ε无关,而初始速度的不可压缩部分与ε相比较小。然后我们得到一个唯一的全局光滑解。我们还证明了这些解的ε时间衰减率是一致的。我们的方法可以结合对ε固定的粘性方程有效的抛物能量估计和对无粘性旋转系统有用的色散技术(色散估计和范式)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信