Steering on-surface reactions through molecular steric hindrance and molecule-substrate van der Waals interactions.

Shiyong Wang, Tomohiko Nishiuchi, Carlo A Pignedoli, Xuelin Yao, Marco Di Giovannantonio, Yan Zhao, Akimitsu Narita, Xinliang Feng, Klaus Müllen, Pascal Ruffieux, Roman Fasel
{"title":"Steering on-surface reactions through molecular steric hindrance and molecule-substrate van der Waals interactions.","authors":"Shiyong Wang,&nbsp;Tomohiko Nishiuchi,&nbsp;Carlo A Pignedoli,&nbsp;Xuelin Yao,&nbsp;Marco Di Giovannantonio,&nbsp;Yan Zhao,&nbsp;Akimitsu Narita,&nbsp;Xinliang Feng,&nbsp;Klaus Müllen,&nbsp;Pascal Ruffieux,&nbsp;Roman Fasel","doi":"10.1007/s44214-022-00023-9","DOIUrl":null,"url":null,"abstract":"<p><p>On-surface synthesis is a rapidly developing field involving chemical reactions on well-defined solid surfaces to access synthesis of low-dimensional organic nanostructures which cannot be achieved via traditional solution chemistry. On-surface reactions critically depend on a high degree of chemoselectivity in order to achieve an optimum balance between target structure and possible side products. Here, we demonstrate synthesis of graphene nanoribbons with a large unit cell based on steric hindrance-induced complete chemoselectivity as revealed by scanning probe microscopy measurements and density functional theory calculations. Our results disclose that combined molecule-substrate van der Waals interactions and intermolecular steric hindrance promote a selective aryl-aryl coupling, giving rise to high-quality uniform graphene nanostructures. The established coupling strategy has been used to synthesize two types of graphene nanoribbons with different edge topologies inducing a pronounced variation of the electronic energy gaps. The demonstrated chemoselectivity is representative for n-anthryl precursor molecules and may be further exploited to synthesize graphene nanoribbons with novel electronic, topological and magnetic properties with implications for electronic and spintronic applications.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44214-022-00023-9.</p>","PeriodicalId":74629,"journal":{"name":"Quantum frontiers","volume":"1 1","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809985/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44214-022-00023-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

On-surface synthesis is a rapidly developing field involving chemical reactions on well-defined solid surfaces to access synthesis of low-dimensional organic nanostructures which cannot be achieved via traditional solution chemistry. On-surface reactions critically depend on a high degree of chemoselectivity in order to achieve an optimum balance between target structure and possible side products. Here, we demonstrate synthesis of graphene nanoribbons with a large unit cell based on steric hindrance-induced complete chemoselectivity as revealed by scanning probe microscopy measurements and density functional theory calculations. Our results disclose that combined molecule-substrate van der Waals interactions and intermolecular steric hindrance promote a selective aryl-aryl coupling, giving rise to high-quality uniform graphene nanostructures. The established coupling strategy has been used to synthesize two types of graphene nanoribbons with different edge topologies inducing a pronounced variation of the electronic energy gaps. The demonstrated chemoselectivity is representative for n-anthryl precursor molecules and may be further exploited to synthesize graphene nanoribbons with novel electronic, topological and magnetic properties with implications for electronic and spintronic applications.

Supplementary information: The online version contains supplementary material available at 10.1007/s44214-022-00023-9.

Abstract Image

Abstract Image

Abstract Image

通过分子位阻和分子-底物范德华相互作用控制表面反应。
表面合成是一个快速发展的领域,它涉及在明确定义的固体表面上进行化学反应,以获得传统溶液化学无法实现的低维有机纳米结构的合成。表面反应主要依赖于高度的化学选择性,以达到目标结构和可能的副产物之间的最佳平衡。通过扫描探针显微镜测量和密度泛函理论计算,我们展示了基于空间位阻诱导的完全化学选择性的大单元石墨烯纳米带的合成。我们的研究结果表明,分子-基质的范德华相互作用和分子间的位阻促进了选择性芳基-芳基偶联,从而产生了高质量的均匀石墨烯纳米结构。利用所建立的耦合策略合成了两种不同边缘拓扑结构的石墨烯纳米带,并引起了电子能隙的显著变化。所证明的化学选择性对n-蒽基前体分子具有代表性,可以进一步用于合成具有新型电子、拓扑和磁性质的石墨烯纳米带,并对电子和自旋电子应用具有重要意义。补充信息:在线版本包含补充信息,获取地址:10.1007/s44214-022-00023-9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信