Bingqing Hao, Jacob DeTone, Mia Stewart, Savannah Kozole, Karen A Beningo
{"title":"Regulation of traction force through the direct binding of Basigin (CD147) and Calpain 4.","authors":"Bingqing Hao, Jacob DeTone, Mia Stewart, Savannah Kozole, Karen A Beningo","doi":"10.1101/2023.03.06.531406","DOIUrl":null,"url":null,"abstract":"<p><p>Traction force and mechanosensing (the ability to sense the mechanical attributes of the environment) are two key factors that enable a cell to modify its behavior during migration. Previously, it was determined that the calpain small subunit, calpain 4 (CapnS1), regulates the production of traction force independent of its proteolytic holoenzyme. A proteolytic enzyme is formed by calpain 4 binding to either of its catalytic partners, calpain 1 and 2. To further understand how calpain 4 regulates traction force, we used two-hybrid analysis to identify more components of the traction pathway. We discovered that basigin, an integral membrane protein and a documented inducer of matrix-metalloprotease (MMP), binds to calpain 4 in two-hybrid and pull-down assays. Traction force was deficient when basigin was silenced in MEF cells, and this deficiency was also reflected in the defect in substrate adhesion strength. Unlike Capn4 <sup>-/-</sup> MEF cells, the cells deficient in basigin had normal mechanosensing abilities. Together, these results implicate basigin in the pathway in which calpain 4 regulates traction force independent of the catalytic large subunits.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028868/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.06.531406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Traction force and mechanosensing (the ability to sense the mechanical attributes of the environment) are two key factors that enable a cell to modify its behavior during migration. Previously, it was determined that the calpain small subunit, calpain 4 (CapnS1), regulates the production of traction force independent of its proteolytic holoenzyme. A proteolytic enzyme is formed by calpain 4 binding to either of its catalytic partners, calpain 1 and 2. To further understand how calpain 4 regulates traction force, we used two-hybrid analysis to identify more components of the traction pathway. We discovered that basigin, an integral membrane protein and a documented inducer of matrix-metalloprotease (MMP), binds to calpain 4 in two-hybrid and pull-down assays. Traction force was deficient when basigin was silenced in MEF cells, and this deficiency was also reflected in the defect in substrate adhesion strength. Unlike Capn4 -/- MEF cells, the cells deficient in basigin had normal mechanosensing abilities. Together, these results implicate basigin in the pathway in which calpain 4 regulates traction force independent of the catalytic large subunits.