Data-Driven Performance Optimization in Section Milling

S. Neema, Lakitosh Singh, Felipe Chiquiza, Joy A. First, Chris Collier, T. Oo, Kalyan Katla, Devon Martin
{"title":"Data-Driven Performance Optimization in Section Milling","authors":"S. Neema, Lakitosh Singh, Felipe Chiquiza, Joy A. First, Chris Collier, T. Oo, Kalyan Katla, Devon Martin","doi":"10.4043/30936-ms","DOIUrl":null,"url":null,"abstract":"One of the major efforts in Oil and Gas industry's digital transformation is the increased use of data in optimizing processes. This paper focuses on optimizing the process of section-milling during well abandonment by leveraging data gathered from past section-milling cycles. Several mathematical model-based techniques have been presented in recent years for improving the rate of penetration (ROP) in section-milling. However, only a few data-driven methodologies have been adopted in this field of interest, most likely due to unavailability of data. A trainingsubset of field data from section-milling operations is used for developing a range of machine learning models. Performance of these models is then evaluated using mean absolute percentage error (MAPE) against testing subset of data.","PeriodicalId":10936,"journal":{"name":"Day 2 Tue, August 17, 2021","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/30936-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the major efforts in Oil and Gas industry's digital transformation is the increased use of data in optimizing processes. This paper focuses on optimizing the process of section-milling during well abandonment by leveraging data gathered from past section-milling cycles. Several mathematical model-based techniques have been presented in recent years for improving the rate of penetration (ROP) in section-milling. However, only a few data-driven methodologies have been adopted in this field of interest, most likely due to unavailability of data. A trainingsubset of field data from section-milling operations is used for developing a range of machine learning models. Performance of these models is then evaluated using mean absolute percentage error (MAPE) against testing subset of data.
数据驱动的截面铣削性能优化
油气行业数字化转型的主要努力之一是在优化流程中增加数据的使用。本文的重点是利用以往分段磨铣周期收集的数据,优化弃井期间的分段磨铣工艺。近年来提出了几种基于数学模型的技术来提高分段铣削的机械钻速。然而,在这个感兴趣的领域中,只有少数数据驱动的方法被采用,很可能是由于无法获得数据。来自分段铣削作业的现场数据的训练子集用于开发一系列机器学习模型。然后使用平均绝对百分比误差(MAPE)对测试数据子集评估这些模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信