Exponentially-fitted algorithms: fixed or frequency dependent knot points?

G. Vanden Berghe, M. Van Daele, H. Vande Vyver
{"title":"Exponentially-fitted algorithms: fixed or frequency dependent knot points?","authors":"G. Vanden Berghe,&nbsp;M. Van Daele,&nbsp;H. Vande Vyver","doi":"10.1002/anac.200310005","DOIUrl":null,"url":null,"abstract":"<p>Exponentially-fitted algorithms are constructed for the derivation of Gauss formulae and implicit Runge-Kutta methods of collocation type making them tuned for oscillatory (or exponential) functions. The weights and the abscissas of these formulae can depend naturally on the frequency <i>ω</i> by the very construction. For twopoints Gauss formulae and two-step Runge-Kutta methods a detailed study of the obtained results is made. In particular the difference in the numerical application of these algorithms with fixed points and/or frequency dependent nodes is analysed. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"49-65"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310005","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Exponentially-fitted algorithms are constructed for the derivation of Gauss formulae and implicit Runge-Kutta methods of collocation type making them tuned for oscillatory (or exponential) functions. The weights and the abscissas of these formulae can depend naturally on the frequency ω by the very construction. For twopoints Gauss formulae and two-step Runge-Kutta methods a detailed study of the obtained results is made. In particular the difference in the numerical application of these algorithms with fixed points and/or frequency dependent nodes is analysed. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

指数拟合算法:固定或频率依赖的结点?
指数拟合算法用于高斯公式和隐式龙格-库塔搭配型方法的推导,使其对振荡(或指数)函数进行调谐。这些公式的权值和横坐标可以很自然地依赖于频率ω。对两点高斯公式和两步龙格-库塔法的计算结果进行了详细的研究。特别分析了这些算法在定点和/或频率相关节点的数值应用中的差异。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信