Tensor-Ring Decomposition with Index-Splitting

Hyun-Yong Lee, N. Kawashima
{"title":"Tensor-Ring Decomposition with Index-Splitting","authors":"Hyun-Yong Lee, N. Kawashima","doi":"10.7566/JPSJ.89.054003","DOIUrl":null,"url":null,"abstract":"Tensor-ring decomposition of tensors plays a key role in various applications of tensor network representation in physics as well as in other fields. In most heuristic algorithms for the tensor-ring decomposition, one encounters the problem of local-minima trapping. Particularly, the minima related to the topological structure in the correlation are hard to escape. Therefore, identification of the correlation structure, somewhat analogous to finding matching ends of entangled strings, is the task of central importance. We show how this problem naturally arises in physical applications, and present a strategy for winning this string-pull game.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7566/JPSJ.89.054003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Tensor-ring decomposition of tensors plays a key role in various applications of tensor network representation in physics as well as in other fields. In most heuristic algorithms for the tensor-ring decomposition, one encounters the problem of local-minima trapping. Particularly, the minima related to the topological structure in the correlation are hard to escape. Therefore, identification of the correlation structure, somewhat analogous to finding matching ends of entangled strings, is the task of central importance. We show how this problem naturally arises in physical applications, and present a strategy for winning this string-pull game.
具有索引分裂的张量环分解
张量环分解在张量网络表示在物理和其他领域的各种应用中起着关键作用。在大多数用于张量环分解的启发式算法中,都会遇到局部极小值捕获的问题。特别是与拓扑结构相关的最小值难以逃脱。因此,识别相关结构,有点类似于寻找纠缠字符串的匹配端,是至关重要的任务。我们展示了这个问题在物理应用中是如何自然出现的,并提出了赢得这个拉线游戏的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信