Optimized Structure, in Silico interaction and Molecular Docking Analysis of Two Benzimidazole-2-Thione Derivatives

Mulveer Singh, S. Murugavel, R. Chandrasekaran, R. Kant
{"title":"Optimized Structure, in Silico interaction and Molecular Docking Analysis of Two Benzimidazole-2-Thione Derivatives","authors":"Mulveer Singh, S. Murugavel, R. Chandrasekaran, R. Kant","doi":"10.13005/msri/190101","DOIUrl":null,"url":null,"abstract":"The nitrogen containing heterocyclic compounds play a very important role in defining their biological and pharmacological properties. Two such important compounds having known crystal structure, viz. 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione (M1) and 4, 5- Dimethylbenzimidazolene-2-thione (M2), have been investigated for their optimal molecular geometry, atomic Mulliken charges, molecule electrostatic potential, HOMO (highest occupied molecular orbital)-LUMO (lowest unoccupied molecular orbital), and associated molecular characteristics using DFT (density functional theory). The optimized geometry of (M1) and (M2), slightly deviates from the X-ray structure. The N-H...S and N-H...O hydrogen bonding contribute to the Hirshfeld surface in the molecular structure M1 [24.2 % and 7.1 % of the overall contribution, respectively] while the N-H...S hydrogen bonding contribution is 25.4% in M2. The crystal void analysis has also been reported, besides the energy frameworks built using distinct intermolecular interaction energies. The computational antibacterial activity of both structures has been analyzed in silico with Staphylococcus epidermidis bacterial protein (PDB ID: 4EJV). The results indicate that M1 and M2 possess higher binding energy with more interactions as compared to the standard drug chloramphenicol with receptor complex and this observation leads us to the state that these two derivatives could be the potential candidates for the antibacterial drug development process. KEYWORDS: Crystal voids; Density Functional Theory; Hirshfeld surface; Interaction energy; Mulliken charges; Molecular orbital energy; Molecular docking","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science Research India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/msri/190101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The nitrogen containing heterocyclic compounds play a very important role in defining their biological and pharmacological properties. Two such important compounds having known crystal structure, viz. 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione (M1) and 4, 5- Dimethylbenzimidazolene-2-thione (M2), have been investigated for their optimal molecular geometry, atomic Mulliken charges, molecule electrostatic potential, HOMO (highest occupied molecular orbital)-LUMO (lowest unoccupied molecular orbital), and associated molecular characteristics using DFT (density functional theory). The optimized geometry of (M1) and (M2), slightly deviates from the X-ray structure. The N-H...S and N-H...O hydrogen bonding contribute to the Hirshfeld surface in the molecular structure M1 [24.2 % and 7.1 % of the overall contribution, respectively] while the N-H...S hydrogen bonding contribution is 25.4% in M2. The crystal void analysis has also been reported, besides the energy frameworks built using distinct intermolecular interaction energies. The computational antibacterial activity of both structures has been analyzed in silico with Staphylococcus epidermidis bacterial protein (PDB ID: 4EJV). The results indicate that M1 and M2 possess higher binding energy with more interactions as compared to the standard drug chloramphenicol with receptor complex and this observation leads us to the state that these two derivatives could be the potential candidates for the antibacterial drug development process. KEYWORDS: Crystal voids; Density Functional Theory; Hirshfeld surface; Interaction energy; Mulliken charges; Molecular orbital energy; Molecular docking
两个苯并咪唑-2-硫酮衍生物的结构优化、硅相互作用及分子对接分析
含氮杂环化合物在确定其生物学和药理学性质方面起着非常重要的作用。两种具有已知晶体结构的重要化合物,即5-甲氧基- 1h -苯并[d]咪唑-2(3H)-硫酮(M1)和4,5 -二甲基苯并咪唑-2-硫酮(M2),已经用密度泛函数理论研究了它们的最佳分子几何形状、原子Mulliken电荷、分子静电势、最高占据分子轨道HOMO -最低未占据分子轨道lumo以及相关的分子特征。优化后的(M1)和(M2)的几何形状与x射线结构略有偏离。- h……S和N-H…O氢键对分子结构M1中的Hirshfeld表面的贡献[分别占总贡献的24.2%和7.1%],而N-H…S在M2中的氢键贡献为25.4%。除了利用不同的分子间相互作用能建立的能量框架外,还报道了晶体空洞分析。用表皮葡萄球菌细菌蛋白(PDB ID: 4EJV)对这两种结构的计算抗菌活性进行了计算机分析。结果表明,与标准药物氯霉素受体复合物相比,M1和M2具有更高的结合能和更多的相互作用,这一观察结果使我们认为这两个衍生物可能是抗菌药物开发过程中的潜在候选者。关键词:晶体空洞;密度泛函理论;Hirshfeld表面;相互作用能;马利肯费用;分子轨道能;分子对接
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信