{"title":"Grain growth in a nanocrystalline Ni81P19 alloy","authors":"Á. Révész , J. Lendvai , I. Bakonyi","doi":"10.1016/S0965-9773(00)00432-3","DOIUrl":null,"url":null,"abstract":"<div><p>Isothermal annealing of a Ni<sub>81</sub>P<sub>19</sub><span><span> amorphous alloy performed at 600 K for 1200 s resulted in the formation of a nanocrystalline state with 10 nm average grain size. </span>Differential scanning calorimetry<span> (DSC) and X-ray diffraction (XRD) measurements were performed to study the influence of further heat treatments. Linear-heating DSC scan starting from the nanocrystalline state revealed a broad exothermic contribution between 600 K and 770 K, corresponding to a grain-growth process. Isothermal annealing of the nanocrystalline alloy yields the complete formation of fcc-Ni and Ni</span></span><sub>3</sub>P phases. This process took place by normal grain-growth at low annealing temperatures, while abnormal grain-growth was observed with increasing annealing temperatures.</p></div>","PeriodicalId":18878,"journal":{"name":"Nanostructured Materials","volume":"11 8","pages":"Pages 1351-1360"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0965-9773(00)00432-3","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanostructured Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965977300004323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Isothermal annealing of a Ni81P19 amorphous alloy performed at 600 K for 1200 s resulted in the formation of a nanocrystalline state with 10 nm average grain size. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) measurements were performed to study the influence of further heat treatments. Linear-heating DSC scan starting from the nanocrystalline state revealed a broad exothermic contribution between 600 K and 770 K, corresponding to a grain-growth process. Isothermal annealing of the nanocrystalline alloy yields the complete formation of fcc-Ni and Ni3P phases. This process took place by normal grain-growth at low annealing temperatures, while abnormal grain-growth was observed with increasing annealing temperatures.