Evolutionary Large-Scale Multi-Objective Optimization: A Survey

Ye Tian, Langchun Si, Xing-yi Zhang, Ran Cheng, Cheng He, K. Tan, Yaochu Jin
{"title":"Evolutionary Large-Scale Multi-Objective Optimization: A Survey","authors":"Ye Tian, Langchun Si, Xing-yi Zhang, Ran Cheng, Cheng He, K. Tan, Yaochu Jin","doi":"10.1145/3470971","DOIUrl":null,"url":null,"abstract":"Multi-objective evolutionary algorithms (MOEAs) have shown promising performance in solving various optimization problems, but their performance may deteriorate drastically when tackling problems containing a large number of decision variables. In recent years, much effort been devoted to addressing the challenges brought by large-scale multi-objective optimization problems. This article presents a comprehensive survey of stat-of-the-art MOEAs for solving large-scale multi-objective optimization problems. We start with a categorization of these MOEAs into decision variable grouping based, decision space reduction based, and novel search strategy based MOEAs, discussing their strengths and weaknesses. Then, we review the benchmark problems for performance assessment and a few important and emerging applications of MOEAs for large-scale multi-objective optimization. Last, we discuss some remaining challenges and future research directions of evolutionary large-scale multi-objective optimization.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"19 1","pages":"1 - 34"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

Abstract

Multi-objective evolutionary algorithms (MOEAs) have shown promising performance in solving various optimization problems, but their performance may deteriorate drastically when tackling problems containing a large number of decision variables. In recent years, much effort been devoted to addressing the challenges brought by large-scale multi-objective optimization problems. This article presents a comprehensive survey of stat-of-the-art MOEAs for solving large-scale multi-objective optimization problems. We start with a categorization of these MOEAs into decision variable grouping based, decision space reduction based, and novel search strategy based MOEAs, discussing their strengths and weaknesses. Then, we review the benchmark problems for performance assessment and a few important and emerging applications of MOEAs for large-scale multi-objective optimization. Last, we discuss some remaining challenges and future research directions of evolutionary large-scale multi-objective optimization.
进化大规模多目标优化:综述
多目标进化算法(moea)在解决各种优化问题方面表现出了良好的性能,但在处理包含大量决策变量的问题时,其性能可能会急剧下降。近年来,人们致力于解决大规模多目标优化问题带来的挑战。本文对用于解决大规模多目标优化问题的最先进的moea进行了全面的综述。我们首先将这些moea分为基于决策变量分组的moea、基于决策空间约简的moea和基于新颖搜索策略的moea,并讨论了它们的优缺点。然后,我们回顾了性能评估的基准问题以及moea在大规模多目标优化中的一些重要和新兴应用。最后,讨论了进化大规模多目标优化存在的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信