Cross-Lingual Cybersecurity Analytics in the International Dark Web with Adversarial Deep Representation Learning

MIS Q. Pub Date : 2022-05-19 DOI:10.25300/misq/2022/16618
Mohammadreza Ebrahimi, Yidong Chai, S. Samtani, Hsinchun Chen
{"title":"Cross-Lingual Cybersecurity Analytics in the International Dark Web with Adversarial Deep Representation Learning","authors":"Mohammadreza Ebrahimi, Yidong Chai, S. Samtani, Hsinchun Chen","doi":"10.25300/misq/2022/16618","DOIUrl":null,"url":null,"abstract":"International dark web platforms operating within multiple geopolitical regions and languages host a myriad of hacker assets such as malware, hacking tools, hacking tutorials, and malicious source code. Cybersecurity analytics organizations employ machine learning models trained on human-labeled data to automatically detect these assets and bolster their situational awareness. However, the lack of human-labeled training data is prohibitive when analyzing foreign-language dark web content. In this research note, we adopt the computational design science paradigm to develop a novel IT artifact for cross-lingual hacker asset detection (CLHAD). CLHAD automatically leverages the knowledge learned from English content to detect hacker assets in non-English dark web platforms. CLHAD encompasses a novel Adversarial deep representation learning (ADREL) method, which generates multilingual text representations using generative adversarial networks (GANs). Drawing upon the state of the art in cross-lingual knowledge transfer, ADREL is a novel approach to automatically extract transferable text representations and facilitate the analysis of multilingual content. We evaluate CLHAD on Russian, French, and Italian dark web platforms and demonstrate its practical utility in hacker asset profiling, and conduct a proof-of-concept case study. Our analysis suggests that cybersecurity managers may benefit more from focusing on Russian to identify sophisticated hacking assets. In contrast, financial hacker assets are scattered among several dominant dark web languages. Managerial insights for security managers are discussed at operational and strategic levels.","PeriodicalId":18743,"journal":{"name":"MIS Q.","volume":"33 30","pages":"1209-1226"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MIS Q.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25300/misq/2022/16618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

International dark web platforms operating within multiple geopolitical regions and languages host a myriad of hacker assets such as malware, hacking tools, hacking tutorials, and malicious source code. Cybersecurity analytics organizations employ machine learning models trained on human-labeled data to automatically detect these assets and bolster their situational awareness. However, the lack of human-labeled training data is prohibitive when analyzing foreign-language dark web content. In this research note, we adopt the computational design science paradigm to develop a novel IT artifact for cross-lingual hacker asset detection (CLHAD). CLHAD automatically leverages the knowledge learned from English content to detect hacker assets in non-English dark web platforms. CLHAD encompasses a novel Adversarial deep representation learning (ADREL) method, which generates multilingual text representations using generative adversarial networks (GANs). Drawing upon the state of the art in cross-lingual knowledge transfer, ADREL is a novel approach to automatically extract transferable text representations and facilitate the analysis of multilingual content. We evaluate CLHAD on Russian, French, and Italian dark web platforms and demonstrate its practical utility in hacker asset profiling, and conduct a proof-of-concept case study. Our analysis suggests that cybersecurity managers may benefit more from focusing on Russian to identify sophisticated hacking assets. In contrast, financial hacker assets are scattered among several dominant dark web languages. Managerial insights for security managers are discussed at operational and strategic levels.
基于对抗性深度表征学习的国际暗网跨语言网络安全分析
在多个地缘政治区域和语言中运行的国际暗网平台托管着无数的黑客资产,如恶意软件、黑客工具、黑客教程和恶意源代码。网络安全分析组织使用经过人工标记数据训练的机器学习模型来自动检测这些资产并增强其态势感知。然而,在分析外语暗网内容时,缺乏人工标记的训练数据是令人望而却步的。在本研究报告中,我们采用计算设计科学范式来开发一种用于跨语言黑客资产检测(CLHAD)的新型IT工件。CLHAD自动利用从英语内容中学习到的知识来检测非英语暗网平台中的黑客资产。CLHAD包含一种新的对抗深度表示学习(ADREL)方法,该方法使用生成对抗网络(gan)生成多语言文本表示。基于跨语言知识转移的最新技术,ADREL是一种自动提取可转移文本表示并促进多语言内容分析的新方法。我们在俄罗斯、法国和意大利的暗网平台上评估了CLHAD,并展示了其在黑客资产分析中的实际效用,并进行了概念验证案例研究。我们的分析表明,网络安全管理人员可能会从关注俄罗斯人来识别复杂的黑客资产中获益更多。相比之下,金融黑客的资产分散在几个占主导地位的暗网语言中。在操作和战略层面讨论安全管理人员的管理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信