{"title":"Introduction to time-of-flight imaging","authors":"E. Charbon","doi":"10.1109/ICSENS.2014.6985072","DOIUrl":null,"url":null,"abstract":"Time-of-flight imaging is a subset of imaging science interested in the detection of the time-of-flight of certain waves, usually light, to reconstruct the position of objects in a 3D scene. Optical time-of-flight imagers have existed for decades, but it is only with the introduction of solid-state sensors with fast (global) shutters, that they have become compact and prone to mass-production. In these sensors, light propagation can be frozen in time and space and its time-of-flight can be evaluated on the pixel-by-pixel basis to accurately reconstruct 3D scenes and volumes. Applications include gaming, gesture recognition, and virtual keyboards for short-range cameras, security, 3D video monitoring, and robotic operation for medium-range cameras, safety and pedestrian avoidance for long-range cameras, and LIDAR telemetry and landscape monitoring for ultra-long-range cameras. Also based on similar concepts are non-vision applications, such as time-of-flight positron emission tomography, fluorescence lifetime imaging microscopy, and time-resolved optical coherent tomography, to name a few.","PeriodicalId":13244,"journal":{"name":"IEEE SENSORS 2014 Proceedings","volume":"538 ","pages":"610-613"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE SENSORS 2014 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2014.6985072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Time-of-flight imaging is a subset of imaging science interested in the detection of the time-of-flight of certain waves, usually light, to reconstruct the position of objects in a 3D scene. Optical time-of-flight imagers have existed for decades, but it is only with the introduction of solid-state sensors with fast (global) shutters, that they have become compact and prone to mass-production. In these sensors, light propagation can be frozen in time and space and its time-of-flight can be evaluated on the pixel-by-pixel basis to accurately reconstruct 3D scenes and volumes. Applications include gaming, gesture recognition, and virtual keyboards for short-range cameras, security, 3D video monitoring, and robotic operation for medium-range cameras, safety and pedestrian avoidance for long-range cameras, and LIDAR telemetry and landscape monitoring for ultra-long-range cameras. Also based on similar concepts are non-vision applications, such as time-of-flight positron emission tomography, fluorescence lifetime imaging microscopy, and time-resolved optical coherent tomography, to name a few.